Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

Reg. No. :
Question Paper Code: 52540
B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.
Eighth Semester
Aeronautical Engineering
AE 6801 — WIND TUNNEL TECHNIQUES
(Regulation 2013)
Time : Three hours Maximum : 100 marks
Answer ALL questions.
PART A — $(10 \times 2 = 20 \text{ marks})$
1. State Buckingham's Theorem.
2. Write down the types of similarities.
3. Classify the types of wind tunnels.
4. What is the function of Effuser?
5. Define horizontal buoyancy.
6. What are the losses in supersonic wind tunnels?
7. Classify flow visualization.
8. What are the advantages of using Tufts?
9. Name the types of pressure transducers.
10. What is Monometer?

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

			PART B — $(5 \times 13 = 65 \text{ marks})$	
11.	(a)	surfa one- tunr kg/n kg/n prot	drag force on a submarine which is moving well belonge, is to be determined by a test on a model, which is scan-twentieth of the prototype. The test is to be carried nel. The density and kinematic viscosity of the seawater 1^3 and 1.3×10^{-6} m ² /s. The water in the tunnel has a derifact of 1^3 and a kinematic viscosity of 1.65×10^{-6} m ² /s. If the state of 1.65×10^{-6} m ² /s, then determine the speed of the model are drag force in the prototype to the model.	led down to in a water or are 1010 usity of 988 peed of the
	(L)	Λ	Or	
	(b)	pres mod For	aircraft is to fly at an altitude of 9 km (where the temper sure are -45°C and 30.2 kPa respectively) at 400 m/s. A led is tested in a pressurized wind tunnel in which the air complete dynamic similarity what pressure and velocity of in the wind-tunnel?	A 1:20 scale is at 15°C.
12.	(a)	(i)	Advantages of open return wind tunnels	(5)
		(ii)	Disadvantages of open return wind tunnels	(8)
			Or	
	(b)	(i)	Advantages of closed return wind tunnels	(7)
		(ii)	Disadvantages of closed return wind tunnels	(6)
13.	(a)	(i)	Explain wind tunnel boundary layers?	(6)
		(ii)	Methods of smoke formation.	(7)
			Or .	
	(b)	(i)	Describe the calibration of supersonic tunnel.	(4)
		(ii)	Determine the Mach Number in the calibration of a tunnel	supersonic (9)
14.	(a)	Writ	te short notes on:	
		(i)	Flow transducers and flow imaging	(7)
		(ii)	Spatial and temporal characterization of Transducers.	(6)
			Or	
	(b)	Exp	lain the following:	
		(i)	Locating points of separation	(8)
		(ii)	Describe Off — surface visualisation	(5)
			. 2	52540
34				

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

Explain the procedure involved in the unsteady pressure measurements over an airfoil draw the Cpmean, Cprms profiles over NACA 4412 airfoil at an angle of attack of 15 degrees. (13)	
Or	
Explain the low speed wind tunnel design procedure with empherical equations and draw the wind tunnel model. (13)	
PART C — $(1 \times 15 = 15 \text{ marks})$	
(i) Define Turbulence Factor. Explain any two methods used to determine the level of turbulence in subsonic tunnels. (8)	
(ii) How do you estimate flow angularity in a wind tunnel test section? Explain any one method with neat sketch. (7)	
Or	
A supersonic wind tunnel with test section Mach number of 3 is to be designed. Determine the amount of total pressure to be provided by the reservoir for the following cases.	
(i) The nozzle exhausts directly to the atmosphere. (4)	
(ii) Add a constant area duct to the nozzle exit and then exhaust the duct to the atmosphere. (4)	
(iii) Add a divergent duct behind the constant area duct and then exhaust it to the atmosphere. (4)	
(iv) Explain the physical reasons behind the above three cases. (3)	
3 52540	
2011년 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
*	
	over an airfoil draw the Cpmon, Cpmon profiles over NACA 4412 airfoil at an angle of attack of 15 degrees. Or Explain the low speed wind tunnel design procedure with empherical equations and draw the wind tunnel model. (13) PART C — (1 × 15 = 15 marks) (i) Define Turbulence Factor. Explain any two methods used to determine the level of turbulence in subsonic tunnels. (8) (ii) How do you estimate flow angularity in a wind tunnel test section? Explain any one method with neat sketch. Or A supersonic wind tunnel with test section Mach number of 3 is to be designed. Determine the amount of total pressure to be provided by the reservoir for the following cases. (i) The nozzle exhausts directly to the atmosphere. (4) (ii) Add a constant area duct to the nozzle exit and then exhaust the duct to the atmosphere. (4) (iii) Add a divergent duct behind the constant area duct and then exhaust it to the atmosphere. (4) (iv) Explain the physical reasons behind the above three cases. (3)