Download Anna University Questions, Syllabus, Notes @www.AllAbtEngg.com

Question Paper Code: 53679

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fourth Semester

Robotics and Automation Engineering

RO 6401 - AUTOMATIC CONTROL SYSTEMS

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

 Draw the free body diagram for the Mass M₂ in the mechanical system shown in Figure. 1.

Fig. 1

- 2. Obtain the transfer function of a tacho-generator from its basic principles.
- 3. The unit-step response of a system is given by $c(t) = 1 e^{-10t}$ for $t \ge 0$. Find the transfer function of the system.
- 4. What is meant by time constant of a system?

Download Anna University Questions, Syllabus, Notes @

www.AllAbtEngg.com

The Polar plot of a system is shown in figure below. Find the gain margin and phase margin of the system.

Fig. 5

- Sketch the relation between frequency and phase of a second order under damped system for different damping ratios.
- 7. Differentiate absolute and relative stability of systems.
- 8. State the Nyquist stability criterion.
- 9. Determine the breakaway point of the root locus of a system whose open loop transfer function is : $G(s) = \frac{K}{s(s^2 + 5s + 6)}$.
- 10. Define state variable of a system.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Determine the transfer function C(s)/R(s) of the system shown in Figure 11(a) by block diagram reduction method.

Fig. 11(a)

Or

53679

Download Anna University Questions, Syllabus, Notes @www.AllAbtEngg.com

(b) Determine the transfer function C(s)/R(s) for the system shown in Fig. 11(b).

Fig. 11(b)

- 12. (a) (i) Obtain the unit-impulse response of a unity feedback control system whose open loop transfer function is $G(s) = \frac{2s+1}{s^2}$. (6)
 - (ii) Obtain the unit step response of a unity feedback control system whose open loop transfer function is $G(s) = \frac{1}{s(s+1)}$. Obtain also the rise time, peak time, maximum overshoot and settling time. (7)

Or

- (b) The open loop transfer functions of three systems are given as $G(s) = \frac{2}{s(s+2)(s+4)}.$ Also for the system given determine the steady state errors with step input r(t) = u(t), ramp input r(t) = t and acceleration input $r(t) = \frac{1}{2}t^2$.
- 13. (a) Sketch the polar plot of a system which has open loop transfer function $G(s) = \frac{20}{s(s+1)(s+2)}.$

Or

(b) Sketch the Bode plot for the transfer function $G(s) = \frac{1000}{(0.1s+1)(0.001s+1)}$. Determine (i) Gain Margin (ii) Phase Margin.

53679

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

- 14. (a) Utilize the Routh table to determine the number of roots of the following polynomials in the right half of the s-plane. Comment about the stability of the system.
 - (i) $s^5 + 2s^4 + 3s^3 + 6s^2 + 10s + 15$
 - (ii) $s^5 + 6s^4 + 15s^3 + 30s^2 + 44s + 24$.

Or

- (b) Consider a system with open loop transfer function as $G(s)H(s)=\frac{4s+1}{s^2(s+1)(2s+1)}.$ Draw the Nyquist plot and also comment on stability.
- 15. (a) Sketch the root locus for the unity feedback system whose open loop transfer function is $G(s)H(s)=\frac{K}{s(s+3)(s+8)}$.

Or

(b) Derive a state space model for the system shown. The input is i_{σ} and the output is e_{σ} .

Fig. 15(b)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Describe the construction and working of variable reluctance and permanent magnet type of stepper motor.

Or

(b) What is a servo motor? Explain the construction, characteristics and control of AC servo motor.

Laholis Daholis

53679