
## Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

| 3). | Reg. No. :                                                                                                                                    |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | Question Paper Code: 20739                                                                                                                    |   |
|     | B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.                                                                                      |   |
|     | Fifth/Sixth Semester                                                                                                                          |   |
|     | Information Technology                                                                                                                        |   |
|     | IT 6502 — DIGITAL SIGNAL PROCESSING                                                                                                           |   |
| 2.  | (Common to : Computer Science and Engineering/Mechatronics Engineering)                                                                       |   |
|     | (Regulation 2013)                                                                                                                             |   |
|     | Time: Three hours Maximum: 100 marks                                                                                                          |   |
|     | Answer ALL questions.                                                                                                                         |   |
|     | PART A — $(10 \times 2 = 20 \text{ marks})$                                                                                                   |   |
| à   | 1. A signal $x(t) = \sin(5\pi t)$ is sampled and what is the minimum sampling frequency is needed to reconstruct the signal without aliasing. |   |
|     | 2. Find the system (transfer) function of given difference equation Using $z$ transform $y(n) - 0.5y(n-1) = x(n)$ .                           |   |
|     | 3. Compute the DFT of unit impulse signal.                                                                                                    |   |
|     | 4. Give any two applications of DCT.                                                                                                          |   |
|     | 5. Why Impulse invariant transformation is not Suitable for the design of high<br>pass filter?                                                | - |
|     | 6. Write the transformation which is used for conversion of analog domain to digital domain by using bilinear transformation                  |   |
|     | 7. Write the condition for FIR filter to have linear phase.                                                                                   |   |
|     | 8. Give the window function of Hamming window.                                                                                                |   |
|     | <ol> <li>Perform the addition of the decimal numbers (0.5 and 0.25) using binary fixed<br/>point representation.</li> </ol>                   |   |
|     | 10. Define deadband. How do calculate the deadband of an IIR system?                                                                          |   |
|     |                                                                                                                                               |   |
|     |                                                                                                                                               |   |

## Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

| *       |                                                                                                                                                      |          |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|         | PART B — (5 × 13 = 65 marks)                                                                                                                         |          |
| 11. (a) | Relate Nyquist rate criteria and aliasing effect with sampling pr<br>Discuss how aliasing error can be avoided.                                      | ocess.   |
|         | Or                                                                                                                                                   |          |
| (p)     | Determine the Region of Convergence of the following signal $z$ transform:                                                                           | using    |
|         | (i) $x(n) = u(-n).$                                                                                                                                  | (4)      |
|         | (ii) $x(n) = u(l-n)$ .                                                                                                                               | (4)      |
|         | (iii) $x(n) = (2)^n u(-n)$ .                                                                                                                         | (5)      |
| 12. (a) | (i) Summarize the properties of DFT.                                                                                                                 | (6)      |
|         | (ii) Determine the circular Convolution of the following system                                                                                      |          |
|         | (1) $x(n) = \{1, 2, 3\}$ and $h(n) = \{1, 2, 1\}$ .                                                                                                  | (3)      |
|         | (2) $x(n) = \{4 \ 1 \ 2 - 3\}$ and $h(n) = \{1 - 1 \ 2\}$ .                                                                                          | (4)      |
|         | Or                                                                                                                                                   |          |
| (b)     | $\hbox{(i)} \qquad \hbox{Compute the DFT of given sequence using DIF-FFT algorithm}.$                                                                |          |
|         | $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}.$                                                                                                                 | (8)      |
|         | (ii) Determine the IDFT of $X(k) = \{6-2-2j\ 2-2+2j\}$ using algorithm.                                                                              | DIT. (5) |
| 13. (a) | Compute a Chebyshev analog lowpass filter transfer function by a bilinear transformation technique for the following specifical $(T=1\;{\rm sec})$ . |          |
|         | $0.8 \le \left  H(e^{j\omega}) \right  \le 1, \ 0 \le \omega \le 0.2\pi$                                                                             |          |
|         | $\left H(e^{j\omega})\right  \le 0.2,  0.6\pi \le \omega \le \pi$ .                                                                                  | (13)     |
|         | Or                                                                                                                                                   |          |
|         |                                                                                                                                                      |          |
|         | 2 20                                                                                                                                                 | 0739     |
|         |                                                                                                                                                      |          |

## Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com



$$0.8 \le \left| H(e^{j\omega}) \right| \le 1 \quad 0 \le \omega \le 0.25\pi$$

$$|H(e^{j\omega})| \le 0.15 \ 0.65\pi \le \omega \le \pi$$

14. (a) Design an Ideal highpass filter with frequency response using hamming window

$$H_d(e^{j\omega}) = \begin{cases} 0, & -\frac{\pi}{2} \leq \omega \leq \frac{\pi}{2} \\ 1, & \frac{\pi}{2} \leq |\omega| \leq \pi \end{cases}$$

Plot the magnitude response for N = 7.

(13)

Or-

(b) Design an ideal lowpass filter with frequency response using rectangular window.

$$H_d(e^{j\omega}) = \begin{cases} 1, & -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \\ 1, & \frac{\pi}{4} \le |\omega| \le \pi \end{cases}$$

$$(13)$$

Plot the magnitude response for N = 11.

- 15. (a) (i) Define Quantization noise. Derive the quantization noise power. (5)
  - (ii) Compute the coefficient quantization error of given second order IIR filter system by both direct and cascade form. Assume b=3 bits. (8)

$$H(z) = \frac{1}{(1 - 0.95z^{-1} + 0.255z^{-2})}$$

Or

(b) (i) Determine the limit cycle oscillations and deadband of the following first order IIR filter. Truncated bit b = 3. (8)

$$y(n) + 0.95 y(n-1) = x(n)$$
.

Input to the system is

$$x(n) = \begin{cases} 0.875, & n = 0 \\ 0, & \text{otherwise} \end{cases}$$

(ii) Discuss the overflow error signal scaling.

(5)

3

20739