	Reg. No. :	10
	Question Paper Code: 41296	
	B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Sixth Semester Information Technology IT 6502 – DIGITAL SIGNAL PROCESSING (Common to Computer Science and Engineering/Mechatronics Engineering (Regulations 2013) Time: Three Hours	
	Time: Three Hours Maximum: 100 M	arks
	Answer ALL questions	
	PART – A (10×2=20 Ma) 1. Define ROC.	rks)
	2. Find the convolution of $x(n) = \{1, 2, 3, 1, 2, 1, 1\}$ and $h(n) = \{1, 2, 1\}$.	
	3. Is DFT of a finite duration sequence is periodic? If so, state the theorem.	
	4. Why FFT is needed?	
	5. What is warping effect?	
	6. Mention the methods for converting analog into digital IIR filter.	
2 -	7. Compare Hanning and Hamming window.	
2	8. What is Linear phase FIR filter?	
	9. Mention the types of quantization errors.	
	10. What is zero input limit cycle oscillations?	
	PART – B (5×13=65 Mar	ks)
	a) $x(n) = \delta(n)$	
	b) $x(n) = [3(3)^n - 4(2)^n] u(n)$	(6)
	 ii) Check whether the system y(n) = nx²(n) is static or dynamic, linear or non-linear, time variant or invariant, causal or non-causal. 	(7)

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

41296		
b)	Determine the response of the system described by the difference	equation
	y(n) = 0.7 y(n - 1) - 0.12 y(n - 2) + x(n - 1) + x(n - 2) to x(n) = nu(n).	the input (13)
	Starting from the key equation of DFT, with necessary equation DIT - FFT algorithm.	ons explain (13)
	(OR)	
b)	Find the 8 point DFT of $x(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ using algorithm.	g DIF-FFT (13)
13. a)	Convert the analog filter with transfer function $H(s) = \frac{2}{(s+1)(s+2)}$ filter using impulse invariant method.	into digital (13)
	(OR)	
b)	Design a digital filter which exhibits equiripple behaviour only eit band or stop band and monotonic characteristics either in pass b band and satisfying the constraints.	
	$0.8 \leq H(e^{j\omega}) \leq 1 \text{for } 0 \leq \omega \leq 0.2 \; \pi$	
	$ H(e^{j\omega}) \le 0.2$ for $0.6 \pi \le \omega \le \pi$	
	using Bilinear transformation.	(13)
14. a)	Explain the procedure of designing FIR filters by windows.	(13)
7.	(OR)	
b)	Explain frequency sampling method of designing FIR filters.	(13)
15. a)	Explain the various quantization errors in detail.	(13)
b)	Explain limit cycle oscillations in detail.	(13)
		×15=15 Marks)
16. a)	Find the 8 point DFT of $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ usin algorithm.	g DIT-FFT (15)
	(OR)	
b)	Explain the characteristics of limit cycle oscillation represented to described by $y(n) = 0.95 y(n-1) + x(n)$. Determine the dead band of	o the system of the filter. (15)