	Reg. No.:				0.00000
St Deletes	south traction		chown yn Sizo	may sheak	SAL
Q	uestion Pa	per Cod	e:500	30	
B.E./B.Tech. DEC	Fifth Aeronauti AE 6505 – CON	Semester cal Engine	ering SINEERIN		
Time : Three Hours				Maximum : 1	00 Marks
	Angway	ALL question			-101
		ART – A	is.	(10×2-2)) Marks)
				(10^2-2)	marks)
Define Analogy sy	ystems.				
2. What are the com	ponents of electrica	l system?			
3. Differentiate bety	ween open loop and o	closed loop co	ntrol system.		
4. Define mixed nod	le in Signal flow grap	oh.			
5. What are static e	rror constants?			a di da g	
6. Draw the time res	sponse of a first orde	r system.			
7. What is a Bode pl	lot?				
8. State necessary a	nd sufficient conditi	on for the Ro	uth-Hurwitz	stability crite	rion.
9. What is a sample	d data system ?		w properties of		
10. Mention the adva	entages of digital cor	ntrol system	(10)		

50030

PART - B

(5×13=65 Marks)

11. a) i) Explain the development of a flight control system.

(6)

ii) Explain the theory of simple hydraulic system with neat diagram.

(7)

(OR)

b) Determine the transfer function of the figure shown in below :

(13)

 a) Determine the transfer function for the figure shown in below by using block diagram reduction technique.

(OR)

-3- 50030

b) Determine the transfer function for the figure shown in figure by using Mason's Gain formula. (13)

13. a) The open loop transfer function of a systems is given as $\frac{5}{s^2(s+3)(s+10)}$. Determine respectively the positional, velocity and acceleration error constants for these systems. Also for the system determine the steady state errors with

step input
$$r(t) = u(t)$$
, ramp input $r(t) = t$ and acceleration input $r(t) = \frac{1}{2}t^2$. (13)

(OR

- i) Explain with neat sketch the time response of a second order system using Unit step input.
 - ii) Determine steady state errors of Type 0, Type 1, Type 2 systems for unit step, unit ramp and unit parabolic inputs.

(8)

14. a) Sketch the root locus diagram for a unity feedback system with its open loop

function as
$$G(s) = \frac{k(s+3)}{s(s^2+2s+2)(s+5)(s+9)}$$
. Thus find the value of k at a point where the complex poles provide a damping factor of 0.5. (13)

(OR)

b) The forward path transfer function of a Unity-feedback control system is given

as
$$G(s) = \frac{k}{s(1+0.1s)(1+0.5s)}$$
 . Draw the Bode plot of $G(s)$ and find the value of k

50030

a) Explain the digital PID controllers and their effect on system performance. (13)
(OR)

b) Explain the theory of digital controllers design in detail.

PART - C (1×15=15 Marks)

(13)

16. a) Draw the schematic of the position control system described below: (15)

Two potentiometers are used as error detector with θ_R driving the reference shaft and the load shaft driving the second potentiometer shaft. The error signal is amplified and drives a D.C. Servomotor armature. Field current of the motor is kept constant. The motor drives the load through a gear.

Draw the block diagram of the system and obtain the closed loop transfer function. Find the natural frequency, damping factor, peak time, peak overshoot and settling time for a unit step input, when the amplifier gain $K_A = 1500$. The parameters of the system are as follows:

Potentiometer sensitivity Kp = 1 V/rad

Resistance of the armature $R_a = 2$ ohm.

Equivalent moment of Inertia at motor shaft = $J = 5 \times 10^{-3} \text{ kg-m}^2$

Equivalent friction at the motor shaft = $B = 1 \times 10^{-3}$ NW/rad/sec

Motor torque constant = $K_T = 1.5 \text{ N m/A}$

Gear ratio n = 1/10

Motor back e.m.f. constant = $K_b = 1.5 \text{ V/rad/sec.}$

(OR

b) Consider a system $G_c(s) \frac{k_v}{s(s+1)}$ and the specifications are e_{ss} for a velocity input should be less than 0.1 phase margin should greater than 40 degree. Design phase lead compensator. (15)