SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

Available @ www.AllAbtEngg.com

Results and Many more...

Reg. No.:

Question Paper Code: 91064

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Fifth Semester

> Aeronautical Engineering AE 6501 – FLIGHT DYNAMICS (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- Draw the typical power required and power available curves of a propeller-driven airplane.
- 2. Define stall velocity of an airplane and write the expression for the same.
- 3. Sketch the force balance of an airplane in a level turn.
- 4. What do you mean by corner speed? State its significance.
- 5. Define stick fixed maneuver point.
- 6. Sketch the typical variation of stick force versus flight velocity.
- 7. What do you mean by rudder lock? How would you prevent it?
- 8. What is the effect of wing location with respect to fuselage on the lateral stability of an airplane?
- 9. Define Dutch roll motion of an airplane.
- 10. Differentiate elevation angle and pitch angle.

PART - B

(5×13=65 Marks)

 a) Explain with suitable graphs the variation of thrust and SFC with flight velocity and altitude of a turbojet engine.

(OR

b) Show that the velocity at minimum power condition is 0.76 times the velocity at minimum drag condition. $\,^{\circ}$

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com

	91064		-2-	
	12. a)	A glider has weight of 5000 e = 0.87. Determine the following the follow	0 N, wing area of 25 m ² , C_{DO} = lowing :	0.012, AR = 16 and
		i) The minimum glide a corresponding speeds un	ngle, minimum Rate Of D nder sea level.	escent (ROD) and (6)
			flight and the greatest distance ght of 300 m. Neglect the char	
		glide.	Line in the second	(7)
		(OR)		
	b)	the aircraft is 160000 N as $C_{_{\rm D}}$ = 0.02 + 0.04 $C_{_{\rm L}}{}^2.$ Assum	m speed of 800 km/hr at sea and wing area is 50 m ² . The dr ne shallow climb angle. Determ the Of Climb (ROC) when flying	ag polar is given by nine the following:
		aerodynamic efficiency.	ce of chino (ROC) when nym	g at 15% of maximum (7)
		ii) Maximum ROC and the	corresponding velocity.	(6)
	13. a)		at a positive incidence and the he fuselage centerline. Derive mbination.	
		(OR)		
	b)		tor angle per 'g' ? Derive an exp airplane in a pull-up maneuve	
	14. a)	i) Derive the contribution of	f wing dihedral angle towards	the lateral stability. (7)
		ii) Derive an expression for		(6)
		(OR)		
	b)	i) Derive an expression for	the contribution of vertical tai	l towards the lateral
		stability of an airplane.		(7)
		Explain the importance encountered by a multi-	e of rudder during one engir engine airplane.	ne failure condition (6)
	15. a)	Explain in detail about any motion of an airplane.	four stability derivatives invo	lved in longitudinal
		(OR)		
	b)	Explain in detail about di suitable sketches.	rectional divergence and spin	ral divergence with
		·		
				1

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com

91064 PART - C (1×15=15 Marks) 16. a) An airplane has W/S = 2800 N/m², b = 25 m, maximum $\rm C_L$ is 1.7. Lift curve slope of the vertical tail is 0.08 per degree. Tail volume ratio is 0.25. The derivative of yawing moment co-efficient with sideslip = 0.015 per degree. Assume that one degree of Rudder deflection changes the vertical tail angle of attack by 0.3 degree. The maximum rudder deflection is limited to $\pm~25$ degree. Determine the maximum crosswind speed that can be permitted for take-off at sea level. Assume that the lift-off velocity is 1.2 times the stall velocity. b) An airplane is flying straight and level at sea level at a speed of 91 m/s. The pilot causes the airplane to enter a horizontal circle of 868 m radius while maintaining the same angle of attack, the engine thrust being altered as necessary. Without altering either the angle of attack or the engine thrust, the pilot then brings the airplane out of the turn and allows it to climb. Estimate the ROC if at that angle of attack the L/D ratio is 9.