Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

	Reg. No. :						95019	
0.000 1002.0	Lamid-Piles	12 10	DEPENDENT.	10102	mr e			
Q	uestion Pa	per Co	de:	9106	9			
	Aeronau AE 6601 – FINIT	th Semester tical Engine	eering NT ME			3ER 2	019	
Time : Three Hours		in w		M	aximu	m:100) Marks	
	Answe	r ALL questi	ons					
		PART – A			(10>	2=20	Marks)	
1. What is Rayleigh	-Ritz method ?							
2. What are the h a	nd p versions of fi	nite element	method	?				
3. What is discretiz	ation?							
4. State the propert	ties of stiffness ma	trix.						
5. What is CST eler								
6. What is meant by	y plane stress anal	ysis?						
7. What is the purp								
8. Write down stiff elements.			ded iso	paramet	ric qua	drilate	eral	
9. Name any four F	EA softwares.							
0. What are the var	rious sources of err	ors in FEA?						
		PART – B			(5×1	3=65	Marks)	
		section show arly with x. C	alculat	e the dis	distrib	uted fo	rce	
f(x) =								
Fi	g. 1							
	(OR)							

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

91069

-2-

- b) For the spring system shown in Fig. 2. k_1 = 100 N/mm, k_2 = 200 N/mm, k_3 = 100 N/mm, P = 500 N, u_1 = u_4 = 0. Calculate :
 - i) The global stiffness matrix.

(6)

ii) The nodal displacements at 2 and 3.

(4)

iii) The reaction forces at node 1 and 4.

(3)

Fig. 2

 a) Derive the stiffness matrix for a two noded bar element using a linear displacement function.

(OR)

- b) Derive stiffness matrix for a beam element using formal approach.
- 13. a) Evaluate the stiffness matrix for the plate element shown in Fig. 3. Take t=0.5 cm, $E=2\times10^7$ N/cm², $\mu=0.27$ using plane stress formulation.

Fig. 3

(OR)

- b) For the plane strain element the nodal displacements are $u_1=0.005$ mm, $v_1=0.002$ mm, $u_2=0$ mm, $v_2=0.0$ mm, $u_3=0.005$ mm, $v_3=0$ mm. Determine the element stresses $\sigma_x,\sigma_y,\tau_{xy}.$ Given E = 70 GPa and μ = 0.3. Use unit thickness for plane strain.
- 14. a) For the 4 nodded quadrilateral element shown in Fig. 4, calculate the Jacobian. The parent element is shown in Fig. 5.

Fig. 4 Quad. 4 element Fig. 5 Parent element in ξ-η plane

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

-3-

91069

(7)

b) Evaluate the following integral using Gauss quadrature (two point) method.

$$I = \int_{-1}^{1} (2 + x + x^{2}) dx$$

$$I = \int_{-1}^{1} \cos \frac{\pi x}{2} dx$$
(6)

15. a) Solve the following system of equation using Naive Gauss Elimination method.

b) A tapered plate of 30 cm length has a width of 10 cm at the top fixed end and 6 cm at the bottom free end. The plate is of uniform thickness of 2 mm. Find the displacement at the nodes by forming into two element model. The plate has a mass density $\rho=7800~kg/m^3$ and Young's modulus $E=2\times10^5~MN/m^2$. In addition to self-weight, the plate is subjected to the point load P=10~kN at its centre acting along its length.

16. a) For the 2-D body shown in Figure 6, determine the temperature distribution. The temperature at the left side of the body is maintained at 100°F. The edges on the top and bottom of the body are insulated. There is heat convection from the right side with convective coefficient h = 20 Btu/h-ft²-°F. The free stream temperature is T_{∞} = 50°F. The coefficients of thermal conductivity are $K_{xx} = K_{yy} = 25$ Btu/h-ft²-°F. The dimensions are shown in the figure. Assume the thickness to be 1 ft.

Fig. 6

(OR)

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

