Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

	Reg. No. :
	Question Paper Code: 52529
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.
	Fifth Semester
	Aeronautical Engineering
	AE 6501 — FLIGHT DYNAMICS
	(Regulation 2013)
Tir	ne : Three hours Maximum : 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	Draw the lift curve for symmetric airfoil and cambered airfoil.
2.	Define center of pressure.
3.	How do you locate the neutral point in an aircraft?
4.	Define Specific fuel consumption.
5.	Mention the role of flaps during takeoff of an aircraft.
6.	What is meant by 'degree of freedom' and how much many does an Aircraft have?
7.	Define side slip angle.
8.	Differentiate stability from controllability.
9.	What is Dutch roll?
10	. Define load factor.
	PART B — $(5 \times 13 = 65 \text{ marks})$
11	An airplane is flying straight and level at a speed which is 'n' times the minimum power speed. Show that the Power ratio $P/P_{\min} = (3+n^4)/4n$, where P is the power required corresponding to flight speed and P_{\min} is the minimum power required at the altitude. (13)
	Or

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

	(b)	(i)	Derive power available and power required curve for piston powered Aircraft.	and jet (8)
		(ii)	Classify the types of aircraft.	(5)
12.	(a)	(i)	Prove that $\frac{\text{Thrust power for climbing}}{\text{Thrust power for level flight}} = \left(1 + \frac{L}{D} \tan \theta\right) \cos^{3\theta}$	² θ. (8)
		(ii)	Derive condition for minimum drag and power required in and level flight.	straight (5)
			Or	
	(b)	(i)	For steep angles of glide, show that the rate of descent speed) of an airplane in powerless glide is given by	(sinking
			$v = (W/1/2 \rho S)^{\frac{1}{2}} \left[C_D / (C_L^2 + C_D^2)^{\frac{3}{4}} \right].$	(8)
		(ii)	Derive the Brequet Range and endurance equation for a jet	aircraft. (5)
13.	(a)	(i)	Write down the expression hr neutral point and static mar explain.	gin and (8)
		(ii)	Using a neat sketch, explain the terms geometric angle of absolute angle of attack, trimmed angle of attack and zero of an aircraft.	attack, lift line (5)
				(0)
	(b)	Diec	Or	andal a
	(0)	Discuss the criteria of longitudinal static stability of an aircraft with a suitable graph. (13		
14.	(a)	(i)	Discuss briefly the construction of various components of towards lateral stability.	aircraft (5)
		(ii)	A twin jet engine has the following data: thrust per e 100000 N, span wise distance between the engine = 10 area = 50m², rudder effectiveness = -0.001/deg, and m rudder deflection = +20 deg. Determine the rudder deflemaintain zero side slip at 100 m/s in level flight at sea le one engine completely out.	m, wing aximum ction to
			Or	
	(b)	Der	we the yawing moment coefficient equation of an aircraft.	(13)
15.	(a)	Der	ive the rolling moment coefficient equation of an aircraft.	(13)
			Or	
	(b)	Disc	cuss the following:	(13)
		(i)	Cross wind landing	
		(ii)	One engine inoperative condition	
		(iii)	Adverse yaw and	
		(iv)	Spin.	
			2	52529
				1

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

