Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

	Reg. No.:
	Question Paper Code: 20804
	B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.
	Third Semester
	Mechanical Engineering
	ME 6301 — ENGINEERING THERMODYNAMICS
	(Common to Automobile Engineering / Mechanical and Automation Engineering)
	(Also common to PTME 6301 – Engineering Thermodynamics for B.E. (Part-Time) Second Semester – Mechanical Engineering Regulations – 2014)
	(Regulations 2013)
	Time: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
	1. Differentiate between path functions and point functions.
	2. What is the work transfer in free expansion process? And why?
	3. Compare source with sink.
	4. What happens to energy, entropy and energy of an isolated system? and why?
	5. What is degree of superheat?
	6. What is Carnot vapour cycle? Plot the same on T-s diagram.
	7. Define compressibility factor.
	8. What is the significance of Clasius-Clapeyron equation?
	9. State Dalton's law of partial pressure.
	10. What is meant by degree of saturation? List the limiting values.

Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) 5 kg of air at 100 kPa pressure and 333 K temperature is compressed polytropically to pressure 750 kPa as per the law Pv^{1.3}. It is then cooled at constant pressure to 333 K. It is then cooled at constant temperature to its original condition. Plot the cycle on p-v diagram, calculate the work in each process and network and heat transfer.

Or

- (b) A compressor delivers 720 kg of air per hour. Air enters at a velocity of 12 m/s, pressure of 1 bar and specific volume of 0.5 m³/kg, leaves at a velocity of 90 m/s, pressure of 8 bar and specific volume of 0.14 m³/kg. The increase in enthalpy of air passing through the air compressor is 150 kJ/kg and heat loss to the surroundings is 12 kJ/s. Find: (i) power required to drive the compressor; (ii) ratio of inlet to outlet pipe diameter.
- 12. (a) If three Carnot engines of same efficiency connected in series such that the 1200 K reservoir supplies 2400 kJ of heat and 150 K reservoir receives 300 kJ of heat, find out the intermediate temperatures, the efficiency and the work output of all the engines.

OI

- (b) Air flows through an adiabatic compressor at 2 kg/s. The inlet conditions are 100 kPa and 310 K and the exit conditions are 700 kPa and 560 K. Consider T_0 to be 298 K. Determine the change in availability and the irreversibility.
- 13. (a) A cylinder with piston contains steam at 8 bar and 435°C. If it is cooled to 200°C at constant pressure, calculate the heat and work transfer per kg and their directions.

Or

- (b) In a reheat Rankine cycle, steam enters the steam turbine at 30 bar and 400°C and expands in a high pressure steam turbine to an intermediate pressure of 3 bar at which it is reheated to 400°C before entering the low pressure turbine. The condenser pressure is 0.5 bar. If the mass flow rate of steam is 40 kg/s. calculate the specific steam consumption, the net work per kg, the power output and the thermal efficiency.
- 14. (a) 5 kmol of carbon monoxide is stored in a 1.135 m³ container at 215 K. Determine the pressure using (i) ideal gas equation and (ii) van der Waals equation. The constants in the van der Waals equation are 146.3 kPa.m⁶/kmol² and 0.0394 m³/kmol.

Or

(b) Derive the four Maxwell's relations.

20804

Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

