SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com

THE REAL PROPERTY.	Question Pa	per Cod	e:91	308	
And the state of	Civil – DESIGN OF REII	th Semester Engineering NFORCED C alations 2013	ONCRET		
Time : Three Hour	rs	Maximum: 100 Mark			
	Answei	ALL question	1S.		
	am man man will be	PART – A		(10×	2=20 Marks)
1. Write any two	assumptions are mad	le in elastic th	eory meth	od.	
2. What is the fo method?	ormula used to find the	e critical neutr	ral axis in	working str	ress
3. Differentiate l	between under reinfor	ced and over r	einforced	section.	
4. Enumerate ba	alanced section.				
5. What is the reinforcement	important mechanis	m of shear re	esistance i	n beams v	vith web
6. Define flexura	al bond and anchorage	bond.			
7. What is the ne	eed of minimum eccen	tricity clause f	for a colum	n design?	
8. What is mean	t by braced column ?				
9. What is punch	ning shear in RCC foot	ting?			
10. What is one w	ray and two way shear	in footing?			
			~.		

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

91308

-2-

PART - B

(5×13=65 Marks)

11. a) Explain the codal recommendations for limit states design.

OR)

- b) Design a rectangular section for a simply supported reinforced concrete beam of effective span of 5 m carrying a concentrated load of 40 kN at its mid span. The concrete to be used is of grade M20 and the reinforcement consists of Fe 415 steel bars.
 - i) Self weight of beam is ignored
 - Self weight of beam is considered.
 Use working stress method.
- 12. a) Design a T- beam section with a flange width of 1200 mm, a flange depth of 100 mm, a web width of 250 mm and an effective depth of 500 mm, which is subjected to a factored moment of 550 kNm. The concrete mix is to be used is of grade M20 and steel is of grade Fe415. Use limit state method.

(OR)

- b) Design a slab over a room 5m × 7m as per I.S. code. The slab is supported on masonry walls all round with adequate restraint and the corners are held down. The live load on the slab is 330 N/m². The slab has a bearing of 150 mm on the supporting walls.
- 13. a) i) Explain the terms Diagonal tension and bond stress with reference to R.C. beams.
 - ii) Obtain an expression for calculation of bond stress and shear stress in case of reinforced concrete beams of rectangular section with tensile steel of diameter (Φ) . Also obtain relationship between bond stress and shear stress.

(OR)

- b) A beam of rectangular section is reinforced with 6 nos of 18 mm diameter bars in tension and is supported on an effective span of 5 m, the beam being 300 mm wide and 700 mm deep. The beam carries a uniformly distributed load of 42 kN/m. Design the shear reinforcement considering no bars are bent up for shear. Assume $\sigma_{\rm sv}=230~{\rm N/mm^2},\,\tau_{\rm c}=0.30~{\rm N/mm^2},\,f_{\rm v}=415~{\rm N/mm^2}.$
- 14. a) Design a short column to carry an axial load of 1200 kN and moment of 60 kNm about the major axis. The effective height of column is 3 m.

(OR

b) Design the reinforcement for a column of size 250 mm \times 300 mm if it is subjected P_u = 500 kN, M_{ux} = 50 kNm and M_{uy} = 30 kNm. Provide effective cover of 50 mm.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

-3-

91308

15. a) A rectangular RCC column of size 400 mm \times 600 mm carrying an axial load of 1800 kN. If the safe bearing capacity of the soil is 150 kN/m². Design a suitable footing. Use M20 concrete and Fe415 steel.

(OR)

b) Design a suitable footing for a 500 mm × 500 mm square column transferring 100 kN axial load and a moment of 35 kN/m. The safe bearing capacity of soil is 190 kN/m² use M20 concrete and Fe415 steel. Adopt limit state design method.

PART - C

(1×15=15 Marks)

16. a) Design a Doubly Reinforced Rectangular simply supported beam at both ends to carry a live load of 25 kN/m and super imposed dead load of 16 kN/m over a clear span of 7 m use M25 and Fe415 are used.

(OR)

b) A RCC section 200 × 400 mm is subjected to a characteristic torsional moment of 2.5 kN/m. and a transverse shear of 60 kN. Assuming the use of M-25 grade concrete and Fe415 HYSD bars. Determine the reinforcement required according to the IS 456 code provisions, using the given data. Assume necessary data if necessary.