	Reg. No.:	I
ha	Question Paper Code: 50281	

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017
Fifth Semester
Civil Engineering
CE 6502 – FOUNDATION ENGINEERING
(Regulations 2013)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. Differentiate thick walled and thin walled sampler.
- 2. When do you apply dilatancy correction in soils?
- 3. Mention the important factors affecting bearing capacity of soils.
- 4. Determine the immediate settlement under the foundation of dimension 12 m \times 24 m that exerts a pressure of 150 kN/m² in sand. The value of E for sand is $60\times10^3 kN/m^2$. Take $I_s=1$ and Poisson's ratio as 0.5.
- 5. Define contact pressure.
- 6. What is floating foundation?
- 7. Give the classification of piles based on their functions.
- 8. How does a pile group behave in cohesionless and cohesive soils?
- 9. Distinguish between active and passive earth pressure.
- 10. What is critical depth?

 a) Explain wash boring method of advancing borehole with a neat sketch and highlight the limitations of the method.

(OR)

- Describe the principle and procedure of conducting subsoil exploration study using seismic refraction method.
- a) Derive the expression of determining the ultimate bearing capacity of strip footing by Terzaghi's method.

(OR)

- b) i) In the field, a soft normally consolidated clay layer exists for a thickness of 20 m. The natural water content, specific gravity of solids and the liquid limit of the clay are 40%, 2.7 and 60% respectively. The ground water table is at the surface and the saturated unit weight is 19.81 kN/m³. The vertical stress increment at the centre of the clay layer due to the foundation load is 10 kN/m². Estimate the settlement of the foundation.
 - (5)
 - ii) Explain the factors governing the location and depth of foundation.
- (8)
- 13. a) Discuss briefly the various types of shallow foundation with simple sketches and under what circumstances these foundation types are preferred?

(OR)

b) Proportion a strap footing for the following data. The allowable soil pressure for DL + reduced LL is 150 kN/m² and for DL + LL is 250 kN/m². Centre to centre distance between the columns is 5 m and the projection beyond column A is not to exceed 0.5 m. The column loads are tabulated below.

Loads	Column A	Column B
DL	600 kN	750 kN
LL	400 kN	880 kN

14. a) A square group of 25 piles extends between depths of 3 m and 10 m in a deposit of 20 m thick stiff clay which is undrained by rock. The diameter of the pile is 0.5 m and the c/c spacing of piles is 1 m. The undrained shear strength of clay at the pile base level is 150 kPa and the average value of the undrained shear strength over the depth of the pile is 100 kPa. Calculate the capacity of the pile group if $N_c = 9$, $\alpha = 0.70$ and factor of safety is 3.

(OR)

			-3-		50281
10	b) Write explanat	cory notes on the fol	lowing:		
	i) Under-reame	ed piles.			(6)
	ii) Drag down pl	henomenon.			(7)
15.	a) Explain Culma	ınn's graphical met	hod to evaluate activ	e thrust.	
		(OR)			
	ii) A concrete re designed to rare: φ = 32°	etaining wall of 5 m resist a horizontal f and $\gamma = 18 \text{ kN/m}^3$.	Rankine's theory of e height supports sand orce of 150 kN/m. Th Determine the height ble force on the wall i	y backfill and has b te properties of back to which water can	kfill
		D	ART – C	(1×15=15	Monka)
16.			e distribution and the	The second second	
	i) For the short	t term : C = 45 kN/r	n^2 , $\varphi = 0^\circ$ and $\gamma = 18$	kN/m ³ .	
	ii) For the long	$term : C = 5 \text{ kN/m}^2$	$\phi = 20^{\circ}$ and $\gamma = 18$ k	xN/m ³ .	
		(OR)			
	and the second s	he displacement ne t required to produc	cessary to produce the ethe active state?	e passive state is m	uch
			in the second		