

Question Paper Code: 57159

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester
Civil Engineering

CE 6404 - SURVEYING - II

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. What is meant by control surveying?
- 2. Define weight of an observation.
- 3. Define the principle of least squares.
- 4. Define hand held receivers.
- 5. What is a Satellite station and reduction to center?
- 6. Define Anti spoofing.
- 7. What is EDM?
- 8. List out the errors in total station.
- Define hydrographic surveying.
- 10. Distinguish between aerial photogrammetry and terrestrial photogrammetry.

1

57159

$PART - B (5 \times 16 = 80 Marks)$

- 11. (a) (i) What is meant by triangulation and describe classification of triangulation? (8)
 - (ii) A steel tape 20m long standardized at 55°F with a pull of 98.1 N was used for measuring a baseline. Find the correction per tape length, if the temperature at the time of measurement was 80 °F and the pull exerted was 156.96 N. Weight of 1 cubic meter of steel = 77107 N. Weight of tape = 7.85 N and E = 2.05×10^5 N/mm², coefficient of linear expansion of tape per °F = 6.2×10^{-6} .

OR

(b) (i) From an eccentric station S, 12.25 m to the west of main station B, the following angles were obtained.

The stations S and C are opposite sides of the line AB. Calculate the correct angle ABC, if the lengths of AB and BC are 5286.5 m and 4932.2 m respectively.

(ii) Find the difference of levels of the points A and B and the R.L of B from the following Data.

Horizontal distance between A and B = 5625. 389 m

Angle of depression from A and B = P 28' 34"

Height of signal of B =3.886 m

Height of instrument at A =1.497 m

Coefficient of refraction =0.07

Rsin 1 "=30.876 m. R.L of A = 1265.85 m

(9)

(8)

12. (a) (i) Discuss various laws of weight.

(8)

(ii) The following are mean values observed in the measurement of three angles α , (β and γ at one station :

 $\alpha = 76^{\circ} 42' 46.2"$ with weight 4

 $\alpha + \beta = 134^{\circ} 36' 32.6"$ with weight 3

 $\beta + \gamma = 185^{\circ} 35' 24.8"$ with weight 2

 $\alpha + \beta + \gamma = 262^{\circ} 18' 10.4"$ with weight 1

Calculate the most probable value of each angle.

(8)

OR

2

57159

www.allabtengg.com

	(b)	A surveyor carried out levelling operations of a closed circuit ABCDA start	ing
		from A and made the following observations:	
		B was 8.164m above A, weight 2	
		C was 6.284m above B, weight 2	
		D was 5.626m above C, weight 3	
		D was 19.964m above A, weight 3 and	
		Determine the probable heights of B, C and D above A by method	
f:		correlates.	(16)
10	/\	What is a total station ? Explain in detail the features of total station and me	erite.
13.	(a)	and demerits of a total station.	(16)
		OR	
	(L)		(10)
	(b)		(6)
		(ii) Explain in detail the sources of error in total station.	(0)
14.	(a)	What is GPS ? Explain in detail the segments of GPS.	(16)
		OR	
	(b)	Explain in detail the orbit determination and orbit representation of GPS.	(16)
15.	(a)	Two straights T ₁ V and VT ₂ are to be connected by a simple curve (based	l on
		chord of 20 m). Calculate the components of simple curve by Rank	ine's
		deflection angle method. The angle of intersection = 140 degrees. Degree of	f the
		curve = 5 degree. The chainage of V is 1618.8metres.	(16
		OR	
	(b)	(i) Explain in detail the methods of locating soundings by sextant	# A043
		theodolite.	(8
		(ii) Calculate the sun's azimuth and hour angle at sunset at a, place in lati 42° 30' N, when its declination is (1) 22° 12' N (2) 22° 12' S	tude (8
		42 30 N, when its decimation is (1) 22 12 N (2) 22 12 5	(0