Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

	Reg. No. :
	Question Paper Code: 20755
	B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.
	Fourth/Fifth/Sixth/Seventh Semester
	Civil Engineering
	MA 6459 — NUMERICAL METHODS
	(Common to Aeronautical Engineering, Agriculture Engineering, Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Geoinformatics Engineering, Instrumentation and Control Engineering, Manufacturing Engineering, Mechanical and Automation Engineering, Petrochemical Engineering, Production Engineering, Chemical Engineering, Chemical and Electrochemical Engineering, Handloom and Textile Technology, Petrochemical Technology, Plastic Technology, Polymer Technology, Textile Chemistry, Textile Technology)
	(Regulations 2013)
	Time : Three hours Maximum : 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
	1. Write down the condition for convergence of iteration method.
	2. Find an iterative formula to find the number $\frac{1}{N}$.
	3. Write down the Newton's backward interpolation formula.
	4. When do you apply Newton's divided difference interpolation formula, for a given problem?
	5. Write down the first two derivatives of Newton's forward difference formula at the point $x=x_0$.
	6. On what type of intervals, Simpson's three – eight rule can be applied.
DEL MARKET	

Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

-	Y	1 1	dy	
7.	In s		$\frac{dy}{dx} = f(x, y), \ y(x_0) = y_0$, write down the Taylor's series formula	a for
8.	Wr	ite dov	on the Euler's algorithm to solve first order differential equation.	
9.	Cla	ssify t	he partial differential equation $x u_{xx} + y u_{yy} = 0$, $x > 0 \& y > 0$.	
10.	Wri	te dov	on the explicit formula to solve one dimensional wave equation.	
			PART B — (5 × 16 = 80 marks)	
11.	(a)	(i)	Find the real positive root of $3x - \cos x - 1 = 0$ by Newton's me correct to 4 decimal process.	
		(ii)	Solve the following system of equations by Gauss elimina	(8) ation
			method. $3x + 4y + 5z = 18, \ 2x - y + 8z = 13, \ 5x - 2y + 7z = 20.$	(8)
			Or	
	(b)	(i)	Solve the following system of equations by Gauss-Seidel method	. (8)
			28x + 4y - z = 32; $x + 3y + 10z = 24$; $2x + 17y + 4z = 35$.	
			[1 1 1]	
		(ii)	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$ by Gauss – Jos	dan
			method.	(8)
12.	(a)	(i)	Using Newton's divided difference formula, find the equal $y = f(x)$ of least degree and passing through the points $(-1, -1, 15)$, $(2, 12)$, $(3, 3)$. Find also y at $x = 0$.	ition
		(ii)	Using Lagrange's interpolation formula find $y(9.5)$ for the g	
			data. x: 7 8 9 10	(8)
			y: 3 1 1 9	
	(h)	Tree at	Or	
	(b)	TIC C	ne following four points by the cubic splines. x: 1 2 3 4	
			y: 1 5 11 8	
		Use (ii) y	the end conditions $y_0"=y_3"=0$. Hence compute (i) $y(1.5)$	and (16)
			2 20	755
				1

Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

