SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

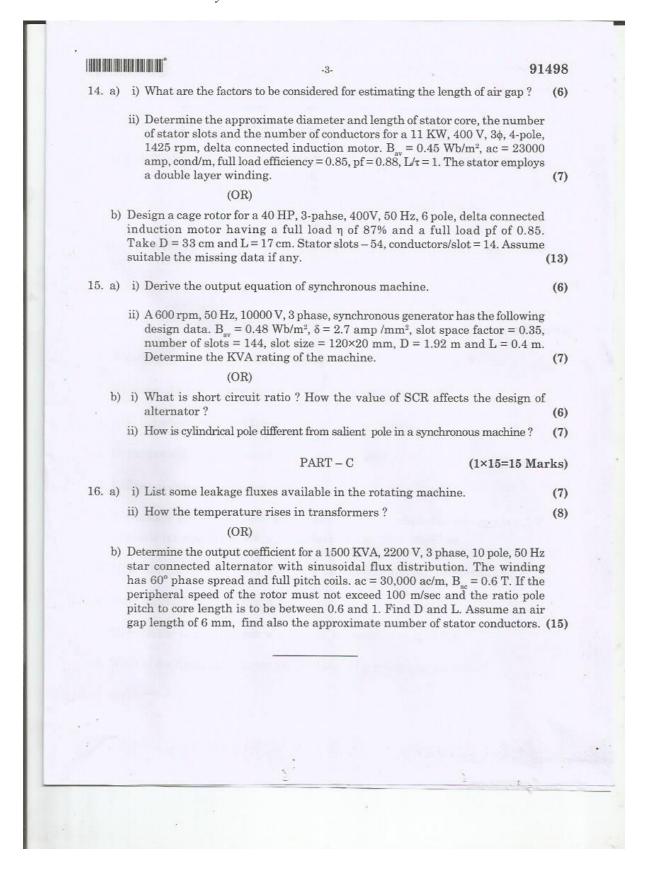
	Reg. No.:		-	
Qu	estion Paper C	ode: 9	1498	3
	REE EXAMINATIONS, Sixth Semes Electrical and Electroni 04 – DESIGN OF ELEC (Regulations	ster ics Enginee TRICAL N	ering	
Time: Three Hours			Ma	ximum : 100 Mark
	Answer ALL qu	estions		
	PART – A	1		(10×2=20 Marks
1. What are the caus	es of failure of insulation?			
2. What are the facto	ors that decide the choice o	of specific m	agnetic l	pading?
3. How the ampere to	urns of the series field coil	is estimate	d ?	
4. Write down the ex	pression for brush friction	losses		
5. Define windows sp	pace factor.			
	rn of a 500 KVA, 11KV, Δ ber of turns per phase of L			
7. What are the typic	cal values of SCR for salier	nt pole and	turbo alt	ernators?
8. State different los	ses in the induction motor			
9. Mention the uses	of damper windings in a sy	ynchronous	machine	LANDERS AND
10. What is the limiting	ng factor for the diameter	of synchron	ous macl	nine?
10				
5	·			

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com


91498		-2-	
		PART - B	(5×13=65 Marks)
11. a)		he electrical properties of insulating naterials based on thermal considera	
		notes on standard specifications. Listandard specifications.	st the parameters involve (6)
		(OR)	
b)	i) Derive the l	heating and cooling curve of an electronic	rical machine. (7)
	resistance i and 0.25 m the specific	in d.c. generator the core loss is 10 s 0.025 ohm. The core and windings for in diameter. Specific loss dissipation electric loading which would result in the core of 40°C. The machine is wave	orm a cylinder 0.25 m long is 230 W/m² – C. Calculate windings and core having
12. a)	i) Draw the m	nagnetic circuit of dc machine.	(6)
	ii) Calculate th	ne main dimensions of a 20 Hp, 1000 r 37 Wb/m² and ac = 16000 amp.cond./r	pm, 400 V, dc motor. Given
	90%.		(7)
		(OR)	the state of the s
b)	drop of 15% in per pole = 720	unt field winding of a 6 pole, 440 V the regulator. The following design 10; mean length of turn = 1.2 m; wind oling surface = 650.	data are available. MMF
13. a)	i) How to calc	culate no-load current of a transform	er ? (6)
	area of con 2200/480 V 50 Hz, by a Maximum of core to so	the dimension of the core, the number aductors in primary and secondary 7, 1-phase, core type transformer, to assuming the following data. Approxifux density = 1.2 Wb/m ² . Ratio of eff quare of diameter of circumscribing c window is 2. Window space factor = 0	windings of a 100 KVA, operate at a frequency of mate Volt/turn = 7.5 Volt. ective cross-sectional area ircle is 0.6. Ratio of height
		(OR)	
b)	watts on full le in plan. Design rise is to be lin	500/400 V, 3-phase core type transform oad. The transformer tank is 1.25 m in a suitable scheme for cooling tubes in inited to 35°C. The diameter of the tub ach other. The average height of the	in height and 1m × 0.5 m of the average temperature se is 50 mm and are spaced
•			
	1		Ti.
	1	1	

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

