SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

Reg. No.:							HO	Ho	

Question Paper Code: 91495

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019

Sixth Semester
Electrical and Electronics Engineering
EE6601 – SOLID STATE DRIVES

(Regulations 2013)
(Common to PTEE 6601 – Solid State Drives for B.E. (Part-time)
Fifth Semester – Electrical and Electronics Engineering – Regulations – 2014)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- Write down the fundamental torque equation of motor-load system with constant inertia.
- 2. What are the components of load torque?
- 3. What are the assumptions made for the purpose of steady state performance analysis of converter fed dc motor drives?
- 4. Write down the control strategies of chopper.
- 5. What are the drawbacks of stator voltage control of induction motor drives?
- 6. What is meant by field weakening mode in induction motor?
- 7. What is the need of delay circuit in open loop v/f control of synchronous motor drives?
- 8. Write down the disadvantage of self control techniques.
- 9. Define mechanical time constant.
- 10. Write down the transfer function of speed feedback filter used in dc drive system.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com

-	495							-2	-				111		THE LOCAL COST CASE.	
								PAR'	$\Gamma - B$				(5×13	8=65 M	(arks)	
11.	a)	De	ive i	the ed	uatio	n to a	analys	e the s	teady st	ate st	ability	of equ	uilibri	um		
		por	nts i	n tne			ue pla	ine.							(13)	
	b)	i)	A m	ofor ((OR)	loade	One h	na motat	ion ol		т	1	1		
		i) A motor drives two loads. One has rotational motion. It is coupled to the motor through a reduction gear with a gear tooth ratio of 0.1 and efficiency of 90%. The load has a moment of inertia of 10 kg-m² and a torque of 10 N-m. Other load has translational motion and consists of 1000 kg weight to be lifted up at an uniform speed of 1.5 m/s. Coupling between this load and the motor has an efficiency of 85%. Motor has inertia of 0.2kg-m² and runs at a constant speed of 1420 rpm. Determine equivalent inertia referred to the motor shaft and power developed by the motor. (9)														
		ii)							eed ch						(9)	
			hois	t, tra	tion	and c	onsta	nt powe	er loads.				,		(4)	
12.	a)	con	verte	moter fed ation	dc se	and parat	braki ely ex	ng ope cited m	ration otor in	of thi detail	ee ph	ase fu	lly co iry wa	ntrolle veform	ıs	
		and	cqu	auon		OD)									(13)	
	h)	Fun	loin	the t		OR)			C 1					200		
	U)	mot	Explain the four quadrant operation of chopper fed dc separately excited motor in detail with neat diagram and waveforms.											d (13)		
13.	a)	stat by v	amet or. I varia	ers for R _s = I ble fi	$R_{r}' = 0$	per p 0.024 ncy c	hase Ω an	approx $dX_s = $ with s	4 pole in imate e $X_r' = 0$ a consta	quiva .12 Ω	lent cir . The	rcuit r motor	eferre	d to th	e d	
		t	oth:	motor	ing a	nd br	aking		of its va							
		ii) 7	he s	tartii frequ	ig tor	que a	nd ro	tor curr	ent in t	erms	of thei	r valu	es at t	he	(10)	
		uzden				OR)									(13)	
	b)	Exp	ain	the di			v for c	oneton	t air ga _l	floor	oom tuol	1.1:	J			
	~/	driv	e in	detail	with	neat	diagr	am and	equati	ons.	control	ned in	auctio	n moto	r (13)	
14.	a)	Exp	ain	the o	en lo	op v/f	contr	ol of sy	nchron	ous m	otor in	detai	with	neat	U U	
		diag	ram.												(13)	
						OR)										
	b)	Expl com	ain t	the se	lf con risto	trolle inve	d synd rter w	hronou ith con	stant m	drive argin	opera angle	tion er contro	nployi ol.	ng load	d (13)	
																٠.
Sec.																
														_	1	

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com

91495

15. a) Derive the transfer function of a separately excited dc motor with armature control.

(13)

(OR)

b) Explain the design of speed controller for dc motor load system with inner current control and outer speed control loop. (13)

PART - C

(1×15=15 Marks)

- 16. a) A 220 V, 875 rpm, 150 A separately excited dc motor has an armature resistance of 0.06Ω . It is fed from a single phase fully controlled rectifier with an ac source voltage of 220 V, 50 Hz. If armature circuit resistance of motor is 0.85 mH, calculate motor torque for $a = 60^{\circ}$ and speed = 400 rpm. (15) (OR)
 - b) A synchronous motor is controlled by a load commutated inverter, which in turn is fed from a line commutated converter. Source voltage is 6.6 kV, 50 Hz. Load commutated inverter operates at a constant firing angle of 140° and when rectifying a = 0°, dc link inductor resistance R_d = 0.1 Ω . Drive operates in self control mode with a constant (v/f) ratio. Motor has the details: 8 MW, 3 phase, 6600 V, 6 pole, 50 Hz, unity power factor, star connected, $X_s = 2.8 \Omega$, $R_s = 0 \Omega$. Determine source side converter firing angles
 - i) Motor operation at the rate current and 500 rpm. What will be the power developed by the motor?
 - ii) Regenerative braking operation at 500 rpm and rated motor current Also calculate power supplied to the source. (15)