| B N       | 100 |
|-----------|-----|
| Reg. No.: |     |

## Question Paper Code: 27472

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Second Semester

Civil Engineering

## PH 6251 - ENGINEERING PHYSICS - II

(Common to all branches except Biotechnology and Pharmaceutical Technology)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

## Answer ALL questions.

## PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Draw qualitatively Fermi-Dirac distribution function at  $T=0\,\mathrm{K}$  and at a temperature  $T>0\,\mathrm{K}$ .
- 2. Calculate the drift velocity of conduction electrons in a copper wire of cross-sectional area 5 mm $^2$  carrying a current of 5 A. Conduction electron density in copper is  $8.5 \times 10^{28}$ / m $^3$ .
- Calculate the electrical conductivity of silicon at room temperature doped with 5 × 10<sup>16</sup> phosphorous atoms /cm<sup>3</sup>. Assume that all the impurities are ionized at room temperature. (Mobility of electrons and holes in silicon are 1350 cm<sup>3</sup>/Vs and 450 cm<sup>3</sup>/Vs respectively).
- 4. The Hall effect experiment is performed to determine the mobility of holes in a p-type silicon. The resistivity and thickness of the sample are  $2.0\times10^5~\Omega{\rm cm}$  and 2 mm respectively. For an applied magnetic field of 0.1 T and current of 5  $\mu{\rm A}$ , the measured Hall voltage is 30 mV. Find the mobility of holes.
- 5. What are magnetic domains? Are they present in all the materials?
- 6. What causes conduction electrons to pair together in conventional superconductor?
- 7. The relative permittivity of diamond and germanium are 5.8 and 16 respectively. Give reasons why relative permittivity of germanium is greater than diamond.
- 8. Why dielectrics are used in capacitors?
- 9. Why metallic glasses are used as transformer core materials?
- 10. What is Kerr effect?

| PART B — | $(5 \times$ | 16 = | 80 | marl | (S |
|----------|-------------|------|----|------|----|
|----------|-------------|------|----|------|----|

| 11. | (a) | Derive the expression for electrical and thermal conductivities of metals following the assumptions of classical free electron theory. Hence deduce Wiedemann-Franz law. (16)                                                                                                              |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     | Or .                                                                                                                                                                                                                                                                                       |
|     | (b) | (i) Derive an expression for density of energy states. (8) (ii) Derive an expression for conduction electron density in metals. (8)                                                                                                                                                        |
| 12. | (a) | Derive the expressions for intrinsic carrier concentration and electrical conductivity of an intrinsic semiconductor. Explain the variation of electrical conductivity with temperature and band gap of the semiconductor.  Or  (16)                                                       |
|     | (b) | Fundain n. tune comisenductor and desire an expression for the mili-                                                                                                                                                                                                                       |
|     | (0) | Explain p- type semiconductor and derive an expression for the position of Fermi level. Explain the behaviour of this semiconductor at high temperature. (16)                                                                                                                              |
| 13. | (a) | (i) Explain the classification of materials based on magnetic behaviour with examples. (12)                                                                                                                                                                                                |
|     |     | (ii) What type of magnetic materials are used in magnetic tapes and electromagnets for data storage? (4)                                                                                                                                                                                   |
|     | (b) | <ul> <li>(i) Explain the terms critical temperature, critical magnetic field and critical current density and their significance for superconductors.(8)</li> <li>(ii) Explain the interaction of type-I and type-II superconductors with external magnetic field.</li> <li>(8)</li> </ul> |
| 14. | (a) | (i) Explain the different mechanism by which a dielectric material loses its insulating property. (8)                                                                                                                                                                                      |
|     |     | (ii) Explain the behaviour of a dielectric material in an alternating electric field of different frequency range. (8)  Or                                                                                                                                                                 |
|     | (b) | (i) Define the term polarizability in dielectrics. Derive an expression for electronic polarizability. (8)                                                                                                                                                                                 |
|     |     | (ii) Explain ferroelectric materials. Give its applications. (8)                                                                                                                                                                                                                           |
| 15. | (a) | (i) What are the properties exhibited by nanomaterials? Explain any one method of preparing nanomaterials. (8)                                                                                                                                                                             |
|     |     | (ii) What are biomaterials? Give the applications of biomaterials in ophthalmology and dentistry. (8)                                                                                                                                                                                      |
|     | (b) | (i) What are shape memory alloys? Give their characteristic properties and applications. (8)                                                                                                                                                                                               |
|     |     | (ii) Explain different kinds of shape memory effect with schematic diagram. (8)                                                                                                                                                                                                            |