For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

Quest	ion Paper Code	: 41006
Elec	EGREE EXAMINATION, A Fifth Semester trical and Electronics Engi 04 – ELECTRICAL MACHI (Regulations 2013)	neering
ime : Three Hours		Maximum : 100 Marks
	Answer ALL questions	
	PART – A	(10×2=20 Marks)
1. Two reaction theory is a	applied only to salient pole ma	achines. State the reason.
2. What are the advantage machines?	es of salient pole type constru	ction used for Synchronous
3. How the synchronous m	otor can be used as synchron	ous condenser ?
4. How does a change of ex	xcitation affect its power facto	r?
5. Why an induction motor	r will never run at its synchro	nous speed ?
6. Explain why an induction	on motor, at no-load, operates	at very low power factor.
7. What is the need of star	ter for induction motor ?	
8. What are the advantage	es of slip power scheme ?	
9. What are the various self-starting?	methods available for mak	
0. What is the principle of	reluctance motor?	

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

	-2- Lavi you	1,000,1
	PART – B (5×13=65 Mar	k
11. a)	Explain the procedure for POTIER method to calculate voltage regulation of	
	-14	(13
	(OR)	
b)	Describe the principle and construction of slow speed operation generator with	
	neat diagram.	(13
12. a)	A 5 kW, three-phase Y-connected 50 Hz, 440 V, cylindrical rotor synchronous motor operates at rated condition with 0.8 pf leading . The motor efficiency excluding field and stator losses is 95% and Xs = 2.5 Ω . Calculate :	
	i) Mechanical power developed	
	ii) Armature current	
	iii) Back emf	
	iv) Power angle	
	v) Maximum or pull out torque of the motor.	13
	(OR)	
b)	Explain the working of synchronous motor with different excitations.	13
13. a)	Explain the construction and working of three phase induction motor. (1	13
	(OR)	
b)	Develop an equivalent circuit for three phase induction motor. State the difference between exact and approximate equivalent circuit. (1	13
14. a)	Explain with neat diagram, the working of any two types of starters used for	
		13
	(OR)	
b)	Explain briefly the various speed control schemes of induction motor. (1	13
15. a)	Give the classification of single phase motors. Explain any two types of single phase induction motor. (1	13
	(OR)	
b)	What is the principle and working of hysteresis motor and AC series motor?	
	Explain briefly. (1	13

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

PART - C (1×15=15 Marks) 16. a) A 415 V, 11kW, 50 Hz, delta connected, three-phase energy efficient induction motor gave the following test results: No load test: 415 V; 5.8 A; 488 W Blocked rotor test: 40 V; 18.4 A; 510 W Stator resistance per phase = 0.7 Ω. For full-load condition, find i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star-connected alternator gave the following test result during OC and SC tests: Field current (A): 10 20 30 40 50 Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.		-3-				410	006
motor gave the following test results: No load test: 415 V; 5.8 A; 488 W Blocked rotor test: 40 V; 18.4 A; 510 W Stator resistance per phase = 0.7 Ω. For full-load condition, find i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star-connected alternator gave the following test result during OC and SC tests: Field current (A): 10 20 30 40 50 Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.		PART - C			(1×15=15 Mai	rks)
Blocked rotor test: 40 V; 18.4 A; 510 W Stator resistance per phase = 0.7 Ω. For full-load condition, find i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star-connected alternator gave the following test result during OC and SC tests: Field current (A): 10 20 30 40 50 Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.			e-phas	e energ	y effici	ent induction	
Stator resistance per phase = 0.7 Ω. For full-load condition, find i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A): 10 20 30 40 50 Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	No load test : 415 V; 5.8	A; 488 W					
For full-load condition, find i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star-connected alternator gave the following test result during OC and SC tests: Field current (A): 10 20 30 40 50 Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	Blocked rotor test: 40 V	; 18.4 A; 510 W					
 i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method. 	Stator resistance per ph	ase = 0.7Ω .					
 i) line current ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method. 	For full-load condition, f	and					
ii) power factor iii) input power iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.							
iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 \Omega/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.							
iv) slip and v) efficiency. (OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 \Omega/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	iii) input power						
(OR) b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A): 10 20 30 40 50 Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.							
b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	v) efficiency.						
b) A 1.1 MVA, 2.2 kV, 3-phase, star -connected alternator gave the following test result during OC and SC tests: Field current (A) : 10 20 30 40 50 Open circuit voltage(kV) : 0.88 1.65 2.20 2.585 2.86 Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	(OR)						
Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	b) A 1.1 MVA, 2.2 kV, 3-ph		altern	ator ga	ve the	following test	
Open circuit voltage(kV): 0.88 1.65 2.20 2.585 2.86 Short circuit current (A): 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.	Field current (A)	: 10	20	30	40	50	
Short circuit current (A) : 200 400 The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.		kV) : 0.88	1.65	2.20	2.585	2.86	
The effective resistance of the 3-phase winding is 0.22 Ω/ph. Estimate the full-load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.			400	_	_		
load voltage regulation at 0.8 p.f. lagging i) By synchronous impedance method and ii) Ampere-turn method.) 22 O/r	h Est	imate the full-	
i) By synchronous impedance method and ii) Ampere-turn method.			ing is c		л. дос	1111100 1110 11111	
ii) Ampere-turn method.							