

Question Paper Code: 57318

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Electrical and Electronics Engineering

EE 6403 - DISCRETE TIME SYSTEMS AND SIGNAL PROCESSING

(Common to Instrumentation and Control Engineering, Electronics and Instrumentation Engineering)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$

- 1. Determine if the system described by the equation $y(n) = x(n) + \frac{1}{x(n-1)}$ is causal or non-causal.
- 2. What is an Anti-Aliasing filter?
- 3. Determine the Z-transform and ROC of the following finite duration signals
 - (i) $x(n) = \{3, 2, 2, 3, 5, 0, 1\}$
 - (ii) $x(n) = \delta(n-k)$
- 4. Compute the convolution of the two sequences

$$x(n) = \{2, 1, 0, 0.5\}$$
 and $n(n) = \{2, 2, 1, 1\}$

- 5. Draw the flow graph of a 4 point radix-2 DIT-FFT butterfly structure for DFT.
- 6. What are the applications of FFT algorithm?

7. Obtain the cascade realization for the system function,

$$H(z) = \frac{\left(1 + \frac{1}{4}z^{-1}\right)}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{a}z^{-1} + \frac{1}{4}z^{-2}\right)}$$

- 8. Mention the advantages of FIR filters over IIR filters.
- 9. What are the merits and demerits of VLIW architecture?
- 10. What are the factors that influence the selection of DSP processor for an application?

$PART - B (5 \times 16 = 80 Marks)$

11. (a) (i) Determine if the signals, $x_1(n)$ and $x_2(n)$ are power, energy or neither energy nor power signals.

$$x_1(n) = \left(\frac{1}{3}\right)^n u(n) \text{ and } x_2(n) = e^{2n} u(n).$$
 (8)

(ii) What is the input signal x(n) that will generate the output sequence $y(n) = \{1, 5, 10, 11, 8, 4, 1\} \text{ for a system with impulse response}$ $h(n) = \{1, 2, 1\}.$

OR

- (b) (i) A signal x(t) = sin c(50 πt) is sampled at a rate of (1) 20 Hz (2) 50 Hz and
 (3) 75 Hz. For each of these cases, explain if you can recover the signal x(t) from the samples signal.
 - (ii) Determine whether or not each of the following signals is periodic. If the signal is periodic, specify its fundamental period.

$$(1) x(n) = e^{j6\pi n}$$
 (5)

(2) $x(n) = \cos \frac{\pi}{3} n + \cos \frac{3\pi}{4} n.$ (5)

57318

12. (a) (i) Find
$$x(n)$$
 if $X(z) = \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{1}{2}z^{-1}}$ (6)

(ii) Find the response of the causal system y(n) - y(n-1) = x(n) + x(n-1) to the input x(n) = u(n). Test its stability. (10)

OF

(b) Find the impulse response, frequency response, magnitude response and phase response of the second order system.

$$y(n) - y(n-1) + \frac{3}{16}y(n-2) = x(n) - \frac{1}{2}x(n-1).$$
 (16)

- 13. (a) (i) Summarize the steps of radix 2 DIT-FFT algorithm. (8)
 - (ii) Compute the 4 point DFT of the sequence x(n) = {0, 1, 2, 3} using DIT and DIF algorithm.(8)

OR

(b) Find the IDFT of the sequence

$$X(K) = \{4, 1-j 2.414, 0, 1-j 0.414, 0, 1+j 0.414, 0, 1+j 2.414\}$$
 Using DIF algorithm. (16)

14. (a) Design an ideal low pass filter with a frequency response

$$\begin{aligned} H_{d}(e^{jw}) &= 1 \text{ for } \frac{-\pi}{2} \le w \le \frac{\pi}{2} \\ &= 0 \text{ for } \frac{\pi}{2} \le |w| \le \pi \end{aligned}$$

Find the values of h(n) for N = 11. Find H(z) and the filter coefficients. (16)

OR

- (b) (i) Given the specifications $\alpha_p = 3$ dB, $\alpha_s = 10$ dB, $f_p = 1$ kHz and $f_s = 2$ kHz. Determine the order of the filter using Chebyshev approximation. Find H(s). (8)
 - (ii) Apply bilinear transformation to

$$H(s) = {2 \over (s+1)(s+2)}$$
 with $T = 1$ sec and find $H(z)$. (8)

57318

5.	(a)	(i)	Discuss on the addressing modes supported by a DSP processor.	(8)
		(ii)	Design a DSP based system for the process of Audio signals in an audio	
			recorder system.	(8)
			OR State and burle (iii)	
	(b)	(i)	Explain the datapath architecture and the bus structure in a DSP processor	
			with suitable diagram.	(8)
		(ii)	Elaborate on Radar signal processing using a DSP processor.	(8)