	Reg. No. :			 		
		3			11	00

Question Paper Code: 50714

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fifth Semester

Electronics and Instrumentation Engineering IC6501 – CONTROL SYSTEMS

(Common to Electrical and Electronics Engineering/Instrumentation and Control
Engineering)
(Regulations 2013)

Time: Three Hours Maximum: 100 Marks

 ${\tt Codes\,/\,Tables\,/\,Charts\,to\,be\,permitted,\,if\,any\,may\,be\,indicated}$

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Define open loop and closed loop control system.
- 2. What are the basic elements used for modeling mechanical translational system?
- 3. Distinguish between type and order of a system.
- 4. What is the effect on system performance when a proportional controller is introduced in a system?
- 5. List out the different frequency domain specifications.
- Give the need for lag/lag-lead compensation.
- 7. What are the necessary conditions for stability?
- 8. What are the effects adding open loop poles and zero on the nature of the root locus and on system ?
- 9. Write the homogeneous and nonhomogeneous state equation.
- 10. Define state trajectory.

-3-

50714

 a) Derive the expressions for second order system for under damped case and when the input is unit step.

(OR)

- b) Find the static error coefficients for a system whose transfer function is, G (s). H (s) = 10/s (1 + s) (1 + 2s). And also find the steady state error for $r(t) = 1 + t + t_{2/2}$.
- 13. a) Sketch the Bode plot and hence find Gain cross over frequency, Phase cross over Frequency, Gain margin and Phase margin for the function

G (s) =
$$\frac{10 (s+3)}{s (s+2) (s^2+4s+100)}$$

(OR)

- b) Sketch the polar plot for the following transfer function and find Gain cross over frequency, Phase cross over frequency, Gain margin and Phase margin for G(s) = 400/s(s+2)(s+10).
- 14. a) A unity feedback control system has an open loop transfer function $G(s) = K(s+9) / s(s^2 + 4s + 11)$. Sketch the root locus.

(OR)

- b) Determine the stability of closed loop system by Nyquist stability criterion, whose open loop transfer function is given by, G (s). H (s) = (s + 2)/(s + 1) (s 1).
- 15. a) Explain the concepts of controllability and observability.

(OR)

b) Obtain the complete solution of nonhomogeneous state equation using time domain method.

PART - C

(1×15=15 Marks)

16. a) For the given system, G (s) = K / s (s + 1) (s + 2), design a suitable lag-lead compensator to give, velocity error constant = 10 sec-1, phase margin = 50°, gain margin ≥ 10 dB.

(OR)

b) Realize the basic compensators using electrical network and obtain the transfer function.