Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

	Reg. No. :
	Question Paper Code: 52945
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.
	Third Semester
	Electrical and Electronics Engineering
	EE 6301 — DIGITAL LOGIC CIRCUITS
	(Common to B.E. Electronics and Instrumentation Engineering/B.E. Instrumentation and Control Engineering)
	(Regulation 2013)
(4	Also common to: PTEE 6301 – Digital Logic circuits for B.E. (Part-Time) Third Semester – Electrical and Electronics Engineering Regulation 2014)
Tim	e: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	Convert a binary number (1101101)2 to decimal and octal numbers.
2.	Define Tri-state gates.
3.	Write the logic expression for Full adder and Full subtractor.
4.	What is meant by canonical form? Give an example for POS and SOP canonical forms.
5.	Draw the sequential logic diagram for Parallel In — Serial Out Shift register.
6.	Write the characteristic equation of JK flip flop and its truth table.
7.	Define race condition. How it can be eliminated.
8.	Describe PROM.
9.	List the purpose of Test bench.
10.	Design a Half adder using HDL

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

		PART B — (5 × 13 = 65 marks)	
11	. (a)	Define Binary code. Demonstrate the Hamming code with an exa	mple.
			(13)
		Or	
	(b)	Explain TTL logic in detail along with its types.	(13)
12	. (a)	Design a Combinational logic circuit to convert Binary to Gray	anda and
		write its truth table.	(13)
		. Or	
	(b)	Implement the following Boolean function using 4:1 Multiplexer.	(20)
	(0)	$F(W, X, Y, Z) = \sum m(0, 1, 2, 4, 6, 9, 12, 14)$	(13)
		$\Gamma(n, A, 1, Z) - Z m(0, 1, 2, 4, 0, 3, 12, 14)$	
13	. (a)	Synthesis a 3 bit counter using T Flip Flop (State diagram, E	xcitation
		table, K-map, Logic diagram).	(13)
		Or	
	(b)	What is meant by a Flip Flop? Write the characteristics e	
		characteristics table and draw logic of SR, JK and D flip flops. (2	2+4+4+3)
14.	. (a)	Explain the steps for the design of Asynchronous sequential circu	uits with
		an example.	(13)
		Or	
	(b)	Draw a PLA circuit to implement the functions	(13)
		$F_1 = AB^{\prime} + AC + A^{\prime} \ BC^{\prime}$ and $F_2 = (AC + BC)^{\prime}$.	
15.	. (a)	Describe RTL in HDL with an example.	
	4.	Or	
	(b)	(i) Write the HDL program for 2:1 multiplexer in Dataf Behavioral Description.	low and (6)
		(ii) Write program in HDL to design 2 bit up/down counter.	
			(7)
		2	52945
			. 1

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

