Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

	Reg. No. :
	Question Paper Code: 52763
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.
	Third/Fourth Semester
	Mechanical Engineering
	CE 6451 — FLUID MECHANICS AND MACHINERY
Eng M	(Common to Aeronautical Engineering/Automobile Engineering/Industrial gineering/Industrial Engineering and Management/Manufacturing Engineering/Iechanical and Automation Engineering/Mechatronics Engineering/Production Engineering)
	· (Regulation 2013)
B.E	(Also common to PTCE 6451 — Fluid Mechanics and Machines for E. (Part-Time) – Second Semester – Mechanical Engineering – Regulation 2014)
Tim	e: Three hours Maximum: 100 marks
	Answer ALL questions.
1.	PART A — (10 \times 2 = 20 marks) Write down the effect of temperature on viscosity of liquids and gases.
2.	Differentiate System and Control volume.
3.	What is the average velocity and the discharge for an oil of viscosity 0.02 Ns/m² flowing between two stationary parallel plates 1 m wide maintained 10 mm apart if the velocity midway between the plates is 2 m/s.
4.	What is the application of Moody's Diagram?
5.	State Buckingham's π theorem. Why this method is considered superior to Rayleigh's method?
6.	Write the scale ratio for velocity and pressure intensity using Froude model law.

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

	9.	Define manometric head of the turbine.				
	10.	Write short notes on Draft tube.				
				PART B — (5 × 13 = 65 marks)		
	11.	(a)	(i)	Derive the Bernoulli's equation with the basic assumption	is. (8)	
			(ii)	Calculate the capillary effect in millimeters in a glass tub diameter, when immersed in (i) water, and (ii) mer temperature of the liquid is 20°C and the values of the tension of water and mercury at 20°C in contract with 0.073575 N/m and 0.51 N/m respectively. The angle of water is zero and that for mercury is 130°. Take density of 20°C as equal to 998 kg/m³.	cury. The he surface th air are contact for	
				Or		
		(b)	Der	ive the Continuity Equation in three dimensions.	(13)	
	12.	(a)	Der	ive the Hagen Poiseuille formula for the flow through Circ	ular nines	
		(~)		The the transfer posterior of the transfer of	(13)	
				Or		
		(b)	Thr	ee pipes of 400 mm, 200 mm and 300 mm diameters have	lengths of	
		٧	mal- with of f	m, 200 m and 300 m respectively. They are connected in the accompound pipe. The ends of this compound pipe are a two tanks whose difference of water levels is 18 m. If the friction for this pipe is same and equal to 0.005, determined through the compound pipe neglecting first the matthen including them.	connected coefficient rmine the	
	13.	(a)	Usi	ng Buckingham π theorem, show that the velocity through	ı a circular	
			orif	ice is given by $V=\sqrt{2}gh\phi[{\rm D/H},\mu/\rho~{\rm VH}]$, where H is the he	ad causing	
				, D is the diameter of the orifice, μ is the coefficient of the	e viscosity,	
			ρ 1	s the mass density and g is the acceleration due to gravity.	(13)	
				Or		
		(b)	(i)	The pressure drop in an airplane model of size 1/10 of its is 80 N/cm ² . The model is tested in water. Find the corpressure drop in the prototype. Take density of air = 1 The viscosity of water is 0.01 poise while the viscosit 0.00018 poise.	responding 1.24 kg/m³.	
			(ii)	Explain similitude with its types.	(6)	
				2	52763	
					:	
	- V					

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

