Reg. No.:			

Question Paper Code: 27200

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Medical Electronics

EC 6502 - PRINCIPLES OF DIGITAL SIGNAL PROCESSING

(Common to Electronics and Communication Engineering)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define DT system.
- 2. How do you obtain a digital signal for DT signal?
- Define pass band.
- 4. Use the backward difference for the derivative to convert analog LPF with system function $H(S) = \frac{1}{S+2}$.
- 5. List the disadvantages of FIR filters.
- 6. List the desirable window characteristics.
- 7. What does the truncation of data result in?
- 8. List the representations for which truncation error is analyzed.
- 9. List the areas in which multirate processing is used.
- 10. State sampling theorem for a band limited signal.

- (a) (i) Illustrate the construction of an 8 point DFT from two 4 point DFTs.
 - (ii) Illustrate the reduction of an 8 point DFT to two 4 point DFTs by decimation in frequency. (8)

Or

(b) (i) Check whether the following systems are linear:

(1)
$$y_{(n)} = \frac{1}{N} \sum_{M=0}^{N-1} x(n-m)$$
. (4)

- (2) $y_{(n)} = [x(n)]^2$. (4)
- (ii) Find the impulse response of the causal system y(n)-y(n-1)=x(n)+x(n-1). (8)
- 12. (a) (i) An analog filter has the following system function. Convert this filter into a digital filter using backward difference for the derivative $H(s) = \frac{1}{(S+0.1)^2+9}$. (8)
 - (ii) Convert the analog filter into a digital filter whose system function is $H(s) = \frac{s+0.2}{(s+0.2)^2+9}$. Use impulse invariance technique. Assume $T=1 \sec$. (8)

Or

- (b) (i) Convert the analog filter with system function $H(s) = \frac{s+0.1}{(s+0.1)^2+9}$ into a digital IIR filter using bilinear transformation. The digital filter should have a resonant frequency of $w_r = \frac{\pi}{4}$. (8)
 - (ii) A digital filter with a 3 dB bandwidth of 0.25 π is to be designed from the analog filter whose system response is $H(s) = \frac{\Omega_c}{s + \Omega_c}$. Use bilinear transformation and obtain H(Z). (8)
- (a) (i) List the steps involved by the general process of designing a digital filter. (8)
 - (ii) List the advantages of FIR filters. (8)

Or

(b)	(i)	The transfer function $H(z) = \sum_{N=0}^{M-1} h(n)z^{-n}$	characterizes a FIR filter
		(M=11). Find the magnitude response.	(8)

 (ii) Use Fourier series method to design a low pass digital filter to approximate the ideal specifications given by

$$H\!\left(\!e^{/\!w}\right)\!=\!\begin{cases} 1, & |f|\!\leq\!f_p\\ 0, & f_p\!<\!|f|\!\leq\!F/2 \end{cases}$$

Where $f_p = pass$ band frequency

$$F =$$
sampling frequency (8)

14. (a) (i) The output of an ADC is applied to a digital filter with system function $H(z) = \frac{0.5z}{z - 0.5}$. Find the output noise power from digital filter when input signal is quantized to have 8 bits. (8)

(ii) Prove that
$$\sum_{n=0}^{\infty} x^2(n) = \frac{1}{2\pi i} \oint_c x(z) x(z^{-1}) z^{-1} dz$$
. (8)

Or

- (b) A digital system is characterized by the difference equation y(n)=0.9y(n-1)+x(n) with x(0)=0 and initial condition y(-1)=12. Find the dead band of the system. Verify with formula for largest integer. (16)
- 15. (a) (i) Obtain the decimated signal y(n) by a factor 3 from the input signal x(n).
 - (ii) Implement a 2 stage decimator for the following specifications:

 Sampling rate of the input signal = 20 kHz, M= 100

 Pass band = 0 to 40 Hz

Transition band = 40 to 50 Hz

Pass band ripple = 0.01

Stop band ripple = 0.002. (8)

Or

- (b) (i) Draw the signal flow graph for IIR structure M-to-1 decimator. (8)
 - (ii) Draw the signal flow graph for 1 to -L interpolator. (8)