

Question Paper Code: 57293

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Medical Engineering

EC 6502 - PRINCIPLES OF DIGITAL SIGNAL PROCESSING

(Common to Electronics and Communication Engineering)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. Is $h(n) = \frac{-1}{4} 8(n+1) + \frac{1}{2} 8(n) \frac{1}{4} 8(n-1)$ is stable and causal? Justify.
- What is the smallest no. of DFTs and IDFTs needed to compute the linear convolution of a length 50 sequence with a length of 800 sequence is to be computed using 64 pt DFT & IDFT?
- 3. What is known as warping effect?
- 4. Why impulse invariant method is not preferred in the design of IIR filter other than LPF?
- 5. What are the two kinds of limit cycle behaviour in DSP?
- 6. List out the advantages of FIR filters.
- Define Dead band.
- 8. What are the methods used to prevent overflow?

16-06 57293

- 9. What is the need for antialiasing filter?
- 10. If the spectrum of a sequence x(n) is $X(e^{jw})$, then what is the spectrum of the signal down sampled by 2?

$PART - B (5 \times 16 = 80 Marks)$

- 11. (a) (i) State and prove if $x_3(K) = x_1(K) x_2(K)$, then $x_3(n) = \sum_{m=0}^{N-1} x_1(m) x_2$ (6)
 - (ii) Using the equation given in 11(a)(i), for the 8 point DFT of the sequence $x(n) = 1, 0 \le n \le 3$

 $0, 4 \le n \le 7$, compute the

DFT of $x_1(n) = 1, n = 0$

$$0, 1 \le n \le 4$$

 $1, 5 \le n \le 7.$ (10)

OR

(b) (i) Compute the 8 point circular convolution $x_1(n) = \{1, 1, 1, 1, 0, 0, 0, 0, 0\}$

$$x_2(n) = \sin \frac{3\pi n}{8}, 0 \le n \le 7$$

using matrix method.

- (12)
- (ii) State the differences between (a) overlap-save (b) overlap-add.
- 12. (a) If $H_a(S) = \frac{1}{(S+1)(S+2)}$, find the corresponding H(z) using impulse invariant method for sampling frequency of 5 samples/second. (16)

OR

(b) Write down steps to design digital filter using bilinear transform technique and using this design a HPF with a pass band cutoff frequency of 1000 Hz & down 10 dB at 350 Hz the sampling frequency is 5000 Hz. (16)

57293

13. (a) Design a filter with $H_d(e^{jw}) = e^{-j3w}, -\frac{\pi}{4} \le w \le \frac{\pi}{4}$

$$=0,\frac{\pi}{4}<\left|\mathbf{w}\right|\leq\pi$$

Using a Hamming window with N = 7.

(16)

OR

- (b) Consider the transfer function $H(z) = H_1(z) \cdot H_2(z)$ where $H_1(z) = \frac{1}{1 \alpha_1 z^{-1}}$ and $H_2(z) = \frac{1}{1 \alpha_2 z^{-1}}$. Find the output round off noise power by assuming $\alpha_1 = 0.5$, $\alpha_2 = 0.6$. (16)
- 14. (a) Draw the quantization noise model for a second order system $H(z) = \frac{1}{1 2r\cos\theta} \frac{1}{z^{-1} + r^2z^{-2}}$ and find the steady state output noise variance. (16)

OR

- (b) Explain the characteristics of limit cycle oscillation with respect to the system described by the difference equation y(n) = 0.95 y(n-1) + x(n). Determine the dead band of the filter. (16)
- 15. (a) For the signal x(n), obtain the spectrum of down sampled signal x(Mn) and upsampled signal $x(\frac{n}{L})$ (16)

OR

(b) Discuss in detail about any two applications of adaptive filtering with a suitable diagram.

57293