For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

	Reg. No. :					
(8)	Question Pape	er Code	: 409	62		
EC 6502	Electronics and Communication – PRINCIPLES OF Department to Biomedical English	th Semester nunication l IGITAL SIG	Engineerii GNAL PRO	ng OCESSIN		
Time: Three Hours			1	Maximum	: 100 Marks	
	Answer Al	LL questions				
	PAI	RT – A		(10×2	=20 Marks)	
1. Calculate the 4-	-point DFT of the seque	$nce x(n) = \begin{cases} 1 \end{cases}$	0 -1	0}.		
	ationship between Four	()		1		
3. What are the m	ethods used for digitizing	ng the analog	filter into	a digital f	filter?	
4. What is meant	by frequency warping?					
5. Draw the direct	form realization of FIR	system.				
6. How the zeros i	n FIR filter is located?					
7. Distinguish bet	ween fixed point arithm	etic and floa	ting point a	arithmetic	2.	
8. Why is rounding	g preferred over trunca	tion in realiz	ing a digita	l filter?		
9. Show that the u	ip sampler and down sa	mpler are tir	ne invariar	nt system.		
	ession for the output y(system as in Figure 1.	n) as a funct	ion of the	input x(n)) for the	
	$x(n) \rightarrow \boxed{\uparrow 5} \rightarrow \boxed{\downarrow 1}$	$0 \rightarrow \uparrow 2$	→ y(n)			
	Figur	re 1				

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

PART – B (5×13=65 Marks) a) i) State and prove any four properties of DFT. (8) ii) Perform circular convolution of the following sequences $x_1(n) = \{1 \ 1 \ 2 \ 1\};$ $x_2(n) = \{1 \ 2 \ 3 \ 4\}.$ (5) (OR) b) i) Mention the differences and similarities between DIT and DIF algorithms. (5) ii) Compute 4 point DFT of a sequence $x(n) = \{0 \ 1 \ 2 \ 3\}$ using DIF and DIT algorithms. (8) a) i) Design an analog Butterworth filter for a given specifications. (7) $0.9 \le H(j\Omega) \le 1 \text{ for } 0 \le \Omega \le 0.2 \pi.$ $ H(j\Omega) \le 0.2 \text{ for } 0.4 \pi \le \Omega \le \pi.$ ii) Apply impulse invariant method and find $H(z)$ for $H(s) = \frac{s+a}{(s+a)^2 + b^2}$. (6) (OR) b) i) Apply bilinear transformation to $H(s) = \frac{2}{(s+1)(s+2)}$ with $T=1$ sec and find $H(z)$. (6) ii) Explain the Lattice-Ladder structure with neat diagram. (7) 3. a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (7+6) (OR) b) Determine the filter coefficients $h(n)$ obtained by sampling $H_d(e^{j\omega}) = e^{-j(N-1)\omega/2}$ $0 \le \omega \le \frac{\pi}{2}$
ii) Perform circular convolution of the following sequences $x_1(n) = \{1 \ 1 \ 2 \ 1\};$ $x_2(n) = \{1 \ 2 \ 3 \ 4\}.$ (5) (OR) b) i) Mention the differences and similarities between DIT and DIF algorithms. (5) ii) Compute 4 point DFT of a sequence $x(n) = \{0 \ 1 \ 2 \ 3\}$ using DIF and DIT algorithms. (8) c. a) i) Design an analog Butterworth filter for a given specifications. (7) $0.9 \le H(j\Omega) \le 1$ for $0 \le \Omega \le 0.2 \pi$. $ H(j\Omega) \le 0.2$ for $0.4 \pi \le \Omega \le \pi$. ii) Apply impulse invariant method and find $H(z)$ for $H(s) = \frac{s+a}{(s+a)^2 + b^2}$. (6) (OR) b) i) Apply bilinear transformation to $H(s) = \frac{2}{(s+1)(s+2)}$ with $T=1$ sec and find $H(z)$. ii) Explain the Lattice-Ladder structure with neat diagram. (7) 3. a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (OR) b) Determine the filter coefficients $h(n)$ obtained by sampling $H_d(e^{j\omega}) = e^{-j(N-1)\omega/2}$ $0 \le \omega \le \frac{\pi}{2}$
 x₂(n) = {1 2 3 4}. (OR) b) i) Mention the differences and similarities between DIT and DIF algorithms. (5) ii) Compute 4 point DFT of a sequence x(n) = {0 1 2 3} using DIF and DIT algorithms. (8) a) i) Design an analog Butterworth filter for a given specifications. (7) 0.9 ≤ H(jΩ) ≤ 1 for 0 ≤ Ω ≤ 0.2 π. H(jΩ) ≤ 0.2 for 0.4 π ≤ Ω ≤ π. ii) Apply impulse invariant method and find H(z) for H(s) =
 b) i) Mention the differences and similarities between DIT and DIF algorithms. ii) Compute 4 point DFT of a sequence x(n) = {0 1 2 3} using DIF and DIT algorithms. (8) (8) (8) (8) (8) (8) (8) (8
 ii) Compute 4 point DFT of a sequence x(n) = {0 1 2 3} using DIF and DIT algorithms. (8) a) i) Design an analog Butterworth filter for a given specifications. (7) 0.9 ≤ H(jΩ) ≤ 1 for 0 ≤ Ω ≤ 0.2 π. H(jΩ) ≤ 0.2 for 0.4 π ≤ Ω ≤ π. ii) Apply impulse invariant method and find H(z) for H(s) =
 a) i) Design an analog Butterworth filter for a given specifications. 0.9 ≤ H(jΩ) ≤ 1 for 0 ≤ Ω ≤ 0.2 π. H(jΩ) ≤ 0.2 for 0.4 π ≤ Ω ≤ π. ii) Apply impulse invariant method and find H(z) for H(s) =
$\begin{array}{c} 0.9 \leq H(j\Omega) \leq 1 \text{ for } 0 \leq \Omega \leq 0.2 \pi. \\ H(j\Omega) \leq 0.2 \text{ for } 0.4 \pi \leq \Omega \leq \pi. \\ \\ \text{ii) Apply impulse invariant method and find } H(z) \text{ for } H(s) = \frac{s+a}{(s+a)^2+b^2}. \end{array} \tag{6}$ $\begin{array}{c} \text{(OR)} \\ \text{b) i) Apply bilinear transformation to } H(s) = \frac{2}{(s+1)(s+2)} \text{with } T=1 \text{ sec and } \\ \text{find } H(z). \\ \text{ii) Explain the Lattice-Ladder structure with neat diagram.} \end{array} \tag{7}$ $\text{3. a) Write the expression for the frequency response of Rectangular window and } \\ \text{Hamming window and explain.} \end{aligned} \tag{7+6}$ $\begin{array}{c} \text{(OR)} \\ \text{b) Determine the filter coefficients h(n) obtained by sampling} \\ H_d(e^{j\omega}) = e^{-j(N-1)\omega/2} 0 \leq \omega \leq \frac{\pi}{2} \end{array}$
 (OR) b) i) Apply bilinear transformation to H(s) = 2/(s+1)(s+2) with T = 1 sec and find H(z). (6) ii) Explain the Lattice-Ladder structure with neat diagram. (7) 3. a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (7+6) (OR) b) Determine the filter coefficients h(n) obtained by sampling H_d(e^{jω}) = e^{-j(N-1)ω/2} 0 ≤ ω ≤ π/2
ii) Explain the Lattice-Ladder structure with neat diagram. (7) 3. a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (7+6) (OR) b) Determine the filter coefficients h(n) obtained by sampling $H_d(e^{j\omega}) = e^{-j(N-1)\omega/2} 0 \le \omega \le \frac{\pi}{2}$
ii) Explain the Lattice-Ladder structure with neat diagram. (7) 3. a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (OR) b) Determine the filter coefficients h(n) obtained by sampling $H_d(e^{j\omega}) = e^{-j(N-1)\omega/2} 0 \le \omega \le \frac{\pi}{2}$
ii) Explain the Lattice-Ladder structure with neat diagram. (7) 3. a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (7+6) (OR) b) Determine the filter coefficients h(n) obtained by sampling $H_d(e^{j\omega}) = e^{-j(N-1)\omega/2} 0 \le \omega \le \frac{\pi}{2}$
 a) Write the expression for the frequency response of Rectangular window and Hamming window and explain. (7+6) (OR) b) Determine the filter coefficients h(n) obtained by sampling H_d(e^{jω}) = e^{-j(N-1)ω/2} 0 ≤ ω ≤ π/2
$H_{d}\left(e^{j\omega}\right)=e^{-j(N-1)\omega/2} 0\leq\mid\omega\mid\leq\frac{\pi}{2}$
the company of the contract of
$=0$ $\frac{\pi}{2} \le \omega \le \pi$
for $N = 7$. (13)
4. a) The output signal of an A/D convertor is passed through a first order low pass
filter, with transfer function given by $H(z) = \frac{(1-a)z}{z-a}$ for $0 \le a \le 1$. Find the
steady state output noise power due to quantization at the output of the digital filter. (13)
(OR)
b) Briefly explain the following:
i) Coefficient quantization error. (4)
ii) Product quantization error. (4) iii) Truncation and Rounding. (5)

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

40962 15. a) Explain sampling rate conversion by a rational factor and derive input-output relation in both time and frequency domain. (OR) b) With neat required diagrams explain any two applications of adaptive filtering. PART - C (1×15=15 Marks) 16. a) An FIR Filter is given by the difference equation $y(n) = 2x(n) + \frac{4}{5}x(n-1) + \frac{3}{2}x(n-2) + \frac{2}{3}x(n-3)$ Determine its lattice form. (15)b) How is signal scaling used to prevent overflow limit cycle in the digital filter implementation? Explain with an example. (15)