(,)	
Y	600
	₽ ^V

Reg. No.	:					38	108
-							

Question Paper Code: 50785

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fourth Semester

Electrical and Electronics Engineering MA 6459: NUMERICAL METHODS

(Common to Aeronautical Engineering/Agriculture Engineering/Civil Engineering/ Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Geoinformatics Engineering/Instrumentation and Control Engineering/Manufacturing Engineering/Mechanical and Automation Engineering/ Petrochemical Engineering/Production Engineering/Chemical Engineering/ Chemical and Electrochemical Engineering/Handloom and Textile Technology/ Petrochemical Technology/Plastic Technology/Polymer Technology/Textile Chemistry/Textile Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

- 1. Write down the order of convergence of Newton-Raphson method.
- State the rate convergence of Gauss Jacobi method and Gauss Seidel method.
- 3. What is the nature of n^{th} divided differences of a polynomial of n^{th} degree ?
- 4. Distinguish between interpolation and extrapolation.
- 5. Write the formula for the derivative to compute at $\frac{dy}{dx}$ at the point $x = x_0$ by using

Newton's forward difference formula.

6. What is two-point Gaussian quadrature formula? For what class of functions f(x) does it given exact answers.

50785

- 7. State the modified Euler formula to find $y(x_1)$ for solving $\frac{dy}{dx} = f(x, y)$, $Y(x_0) = y_0$.
- 8. How many prior values are required in predictor-corrector formulae?
- 9. Write down the diagonal five point formula to solve the Laplace's Equation $\nabla^2 \ u(x,y) = 0 \, \cdot$
- 10. Write down the explicit formula to solve the hyperbolic equation $u_{tt} = 9u_{xx}$ when $\Delta x = 0.25$ and $\Delta t = 1/16$.

- 11. a) i) Find the smallest positive root of x³-2x-5=0 by the fixed point iteration method, correct to three decimal places.
 - ii) Find the inverse of the matrix $A = \begin{pmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$ by Gauss-Jordan method. (8)

(OR)

- i) Solve the following system of equations by Gauss-Seidel method, correct to three decimal places:
 28x + 4y z = 32; x + 3y + 10z = 24 and 2x + 17y + 4z = 35.
 - ii) Find, by power method, the largest eigenvalue and the corresponding

eigenvector of a matrix
$$A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 starting with initial vector $X^{(0)} = (1\ 0\ 0)^{T}$. (8)

- 12. a) i) Find the interpolation polynomial f (x) by Lagrange's formula and hence find f (3) for (0, 2), (1, 3) (2, 12) and (5, 147).
 - ii) Find the interpolation polynomial f (x) by using Newton's forward difference interpolation formula and hence find the value of f(5) for

b) Find the cubic spline approximation for the function given below.

$$x: 0 1 2 3$$

 $f(x): 1 2 33 244$
Assume that $M(0) = 0 = M(3)$. Hence find the value of $f(2.5)$. (16)

-3-13. a) i) Find the first and second derivatives of y with respect to x at x = 10 from the

50785

following data:

y: 31 43 57 41 ii) Evaluate $\iint_{00}^{22} f(x,y) dx dy by Trapezoi to three decimal places: $		x:		3	5		7 9	11	1		
to three decimal places: x		у:	3	1	43	5	7 41	27	7		-
to three decimal places: x					01	,					
to three decimal places: x		ii) Ev	alua	te]]	1(x, y	y) dx d	ly by Trape:	zoidal r	rule for	r the following data, co	orrect
X 0 0.5 1 1.5 2 0 2 3 4 5 5 1 3 4 6 9 11 2 4 6 8 11 14											
y 0 0.5 1 1.5 2 0 2 3 4 5 5 1 3 4 6 9 11 2 4 6 8 11 14 (OR) b) i) The following data give the correspondence (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g		to	three	e deci	mal	places	· Andrews				
y 0 0.5 1 1.5 2 0 2 3 4 5 5 1 3 4 6 9 11 2 4 6 8 11 14 (OR) b) i) The following data give the correspondence (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g											
y 0 2 3 4 5 5 1 3 4 6 9 11 2 4 6 8 11 14 (OR) b) i) The following data give the correspond volume (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g			x ,	0.5							
(OR) b) i) The following data give the correspond volume (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y are correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g		У	1	0.5	1	1.5	2				
(OR) b) i) The following data give the correspondence volume (v) of a superheated steam. For respect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y are correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g			0 2	2 3	4	5	5				
b) i) The following data give the correspondence (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y are correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g			1 8	3 4	6	9 1	1				
b) i) The following data give the correspond volume (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y at correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g			2 4	1 6	8	11 1	4				
 b) i) The following data give the correspond volume (v) of a superheated steam. Frespect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluating places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y are correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g 		_		-							
volume (v) of a superheated steam. F respect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluation places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g					((OR)					
volume (v) of a superheated steam. F respect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluation places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g	11	'\ m	0.11								
respect to volume when v = 2. v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluation places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g	U)										
v: 2 4 6 8 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluation places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y accorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g								Find t	he rat	e of change of pressure	e with
 p: 105 42.7 25.3 16.7 ii) Using Simpson's one-third rule, evaluable places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y are correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g 			- 1/4		186.76.4	e wher		n.	15	com	
 ii) Using Simpson's one-third rule, evaluation places by step-size = 0.1. 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y are correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g 				(F)		25.9	San	13.0			
places by step-size = 0.1. 4. a) Given dy/dx = xy + y ² , y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y arcorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g		р.	10	0 42		20.0	10.7		0.6		
places by step-size = 0.1. 4. a) Given dy/dx = xy + y ² , y(0) = 1, y (0.1) = i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y arcorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g		ii) Us	ing S	Simns	on's	one-th	ird rule ev			dx correct to three de	lemina
 4. a) Given dy/dx = xy + y², y(0) = 1, y (0.1) = y (0.3) by R-K method of fourth order y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y arcorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g 								aruan	0	da correct to timee de	
 i) y (0.3) by R-K method of fourth order ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y arcorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g 		pla	ices i	by ste	p-s12	ze = 0.	1.			MARKET WITE	
 ii) y (0.4) by Milne's method. (OR) b) i) Use Taylor series method to find y arcorrect to 4 decimal places. ii) Using Adam's method, find y(0.4), g 	4. a)	Given	dy/d	lx = x	y + 3	y^2 , y(0)	= 1, y (0.1)	= 1.11	69 and	ly(0.2) = 1.2773, find	
 i) Use Taylor series method to find y a correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g 		i) y (0.3) 1	by R-I	K me	ethod o	of fourth ord	ler and			
 b) i) Use Taylor series method to find y as correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g 		ii) y (0.4) 1	by Mil	lne's	meth	od.				(
correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g					((OR)					
correct to 4 decimal places. ii) Using Adam's method, find y(0.4), g	b)	i) Us	e Ta	ylor s	erie	s meth	od to find y	at x =	0.1. gi	$ven dv/dx = x^2 - v. v(0)$)) =1.
									, 0	3,3(, -,
y(0.1) = 1.01, $y(0.2) = 1.002$ and $y(0.2) = 1.002$		ii) Us	ing I	Adam	's m	ethod	find y(0.4)	, given	dy/dx	= (xy)/2, y(0) = 1,	
		у (0.1):	= 1.01	l, y (0.2) =	1.002 and y	(0.3) =	1.023	•	

50785

- 15. a) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ in the square region $0 \le x, y \le 3$ with u = 0 on the boundary and mesh length 1 unit. (OR)
 - b) i) Solve the boundary value problem x y'' + y = 0 with the boundary conditions y(1) = 1 and y(2) = 2, taking h = 1/4 by finite difference method. (8)
 - ii) Solve $u_t = u_{xx}$ in 0 < x < 4, t > 0, given that u(0, t) = 0, u(4, t) = 0, u(x, 0) = x (8)

www.binils.com