Reg. No.:					 000

Question Paper Code: 50393

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Fifth/Eighth Semester Computer Science and Engineering CS 6503: THEORY OF COMPUTATION (Common to: Information Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Define finite automata.
- 2. State the definition of pumping lemma for regular set.
- 3. What are the closure properties of context-free languages?
- 4. Derive a string 'aababa' for the following Context Free Grammar (CFG).

 $S \rightarrow aSX/b$;

 $X \rightarrow Xb/a$

- 5. Give the steps to eliminate useless symbols.
- 6. Show that $L = \{a^p/p \text{ is prime}\}\$ is not context free.
- 7. Define Turing Machine.
- Give the configuration of Turing machine.
- List the properties of recursive and recursive enumerable language.
- 10. Write short notes on tractable problem.

50393	2- 04 998	
	PART – B	(5×13=65 Marks)
11. a) Convert the €-N	FA to DFA and list the difference between 1	NFA and DFA. (10+3)
	b	
TIOS SISTEMAT	GERE EXAMINATION, NO VIBERD	
	Computer Science at Engineering	
	CS 6508 THEORY.O COMPL'S ATION	
Start 00	a & 6	
Start (q0)	q^2	
11 61	(OR)	
b) Show that the rei) Union	gular language are closed under:	(13)
ii) Inter section		
iii) Kleen closure		L getme inute autom
iv) Complement	in all miles can be printed to the	2. State the definition
v) Difference.	ww.binils.d	nom
12. a) i) Construct a C	FG to generate even and odd set of palindro	
{a, b}.	r o to generate even and odd set of panndro.	mes over aipnabet (7)
ii) Generate CF	G for the language $L = \{0^i l^j 0^k j > i + k \}$.	(6)
		A Gine also such and
b) i) Find an equiv	valent grammar in CNF for the grammar:	(7)
$S \rightarrow bA/aB$	Sport to supplied it (surrogate	Was abow that L= (aWa
$A \rightarrow bAA/aS$	/a	
	/b.	8. Give the configural
$B \rightarrow aBB/bS$		
	e unit production of the following grammar	
ii) Eliminate the $S \rightarrow A/bb$	e unit production of the following grammar	
ii) Eliminate the $S \rightarrow A/bb$ $A \rightarrow B/b$	e unit production of the following grammar	
ii) Eliminate the $S \rightarrow A/bb$	e unit production of the following grammar	9. List the proportus
ii) Eliminate the $S \rightarrow A/bb$ $A \rightarrow B/b$	e unit production of the following grammar	9. List the proportus

		-3- 50	393
13.	a)	i) Find PDA that accept the given CFG : $S \rightarrow xaax$	(7)
		$X \to ax/bx/\varepsilon$.	
		ii) Construct PDA for the language aⁿb^ma^{n+m}.(OR)	(6)
	b)	i) Prove that deterministic and non deterministic PDA are not equivalent.	(8)
		ii) Explain pumping Lemma for CFL.	(5
14.	a)	Construct Turing Machine (TM) that replace all occurrence of 111 by 101 from	
		sequence of 0's and 1's.	(13
		(OR)	
	b)	i) Explain techniques for Turing Machine Construction.	(7
		ii) Illustrate the Chomsky grammar classification with necessary example.	(6
15.	a)	Explain universal Turing Machine.	(13
		(OR)	
	b)	Explain how to measure and classify complexity.	(13
		PART – C (1×15=15 Ma	rks
16.	a)	Prove that Halting problem is undecidable.	(15
		(OR)	
	b)	Consider two-tape Turing machine (TM) and determine whether the TM always writes a nonblank symbol on its second tape during the computation on any input string 'w'. Formulate this problem as a language and show it is	
		undecidable.	(15