

Question Paper Code: 50435

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester

Electronics and Communication Engineering EC6303 – SIGNALS AND SYSTEMS

(Common to : Medical Electronics , Biomedical Engineering) (Regulations 2013)

Time: Three Hours

Answer ALL questions.

Maximum: 100 Marks

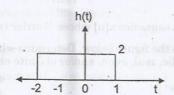
PART - A

(10×2=20 Marks)

1. Determine if the signal x[n] given below is periodic. If yes, give its fundamental period. If not, state why it is aperiodic.

$$X[n] = \sin\left(\frac{6\pi}{7}n + 1\right)$$

- 2. Check whether the following system is Time Invariant/Time variant and also V(t) = v(t)
 - causal/non causal: $Y(t) = x\left(\frac{t}{3}\right)$.
- 3. Find whether the following system with impulse response h(t) are stable or not. $h(t) = t \, e^{-t} \, u(t)$.
- 4. Find the Fourier transform of $x(t) = e^{-at} u(t)$.
- 5. Will there be two different signals having same Laplace transform? Give an example. How do you differentiate these two signals?
- 6. Consider an LTI system with transfer function H(s) is given by $H(s) = \frac{1}{(s+1)(s+3)}$ Re(s)>3; determine h(t).
- 7. List the ROC properties of Laplace transform.
- Find the Z transform of a sequence x[n] = cos(n ωT) u[n].
- Write the condition for stability of a DT-LTI system with respect to the position of poles.
- 10. Realize the difference equation y[n] = x[n] 3x[n-1] in direct form I.


50435 PART - B (5×13=65 Marks) 11. a) Find the whether the signal is an energy signal or power signal. i) $x(t) = e^{-2t} u(t)$. ii) Draw the waveform for the signal x(t) = r(t) - 2r(t-1) + r(t-2). (4) iii) For the given signal determine whether it is even, odd, or neither. (4) x[n] x[n] -4-3-2-101234 0 1 2 3 4 (OR) b) Determine whether the following system is Linear and Causal. i) y[n] = x[n]. x[n-1] and y[n] =[x[n-1] + x[n] + x[n+1]].ii) For x(t) indicate in figure sketch the following: a) x(1-t)[u(t+1)-u(t-2)]b) x(1-t)[u(t+1)-u(2-3t)]. 12. a) i) Find the Fourier transform of a rectangular pulse with width T and amplitude A. ii) Determine the Fourier series coefficients of the following signal. -T -T/2 -T1 T1 T/2 (OR)

50435

- b) i) Determine the Fourier transform for double exponential pulse whose function is given by $x(t) = e^{-a|t|}$, a > 0. Also draw its amplitude and phase spectra. (7)
 - ii) Obtain the inverse Laplace transform of the function (6) $X(s) = \frac{1}{s^2 + 3s + 2}, \text{ ROC: } -2 < \text{Re}\{s\} < -1.$
- 13. a) i) Using Laplace transform of x(t). Give the pole-zero plot and find ROC of the signal x(t). x(t) = e^{-b|t|} for both b>0 and b<0.
 - ii) Find the condition for which Fourier transform exists for x(t). Find the Laplace transform of x(t) and its ROC. $x(t) = e^{-at} u(-t)$. (7)
 - b) i) Using graphical method, find the output sequence y[n] of the LTI system whose response h[n] is given and input x[n] is given as follows.
 x[n] = {0.5, 2}; h[n] = {1, 1, 1}.
 - ii) Find the response y(t) of an LTI system whose x(t) and h(t) are shown in fig. (Using convolution integral).(7)

- 14. a) i) Find the Z transform and sketch the ROC of the following sequence $x[n] = 2^n u[n] + 3^n u(-n-1)$. (7)
 - ii) Consider an analog signal $x(t) = 5 \cos 200 \pi t$.
 - a) Determine the minimum sampling rate to avoid aliasing.
 - b) If sampling rate Fs = 400 Hz. What is the DT signal after sampling? (6)
 - b) i) Determine unit step response of the LTI system defined by $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = \frac{dx}{dt} + x(t). \tag{7}$
 - ii) Find the Inverse z-transform using partial fraction method. (6)

$$X(z) = \frac{3 - (5/6)z^{-1}}{(1 - (1/4)z^{-1})(1 - (1/3)z^{-1})} ; |z| > 1/3$$

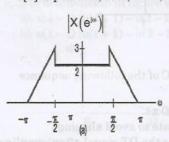
50435

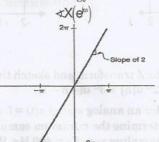
- 15. a) i) Obtain the parallel realization of the system given by $y(n)-3y(n-1)+2\ y(n-2)=x(n). \tag{6}$
 - ii) Determine the direct form II structure for the system given by difference equation

$$y(n) = \left(\frac{1}{2}\right)y(n-1) - \left(\frac{1}{4}\right)y(n-2) + x(n) + x(n-1).$$
(OR)

b) Using the properties of inverse Z-transform solve:

(5+5+3)


(15)


- i) $X(z) = \log(1 + az^{-1}); |z| > |a| \text{ and } X(z) = \frac{az^{-1}}{(1 az^{-1})^2}; |z| > |a|$
- ii) Check whether the system function is causal or not

$$H(z) = \frac{1}{1 - (1/2)z^{-1}} + \frac{1}{1 - 2z^{-1}}$$
 ; $|z| > 2$

iii) Consider a system with impulse response $H(s) = \frac{e^s}{S+1}$; $Re\{s\} > -1$. Check whether the system function is causal or not .

16. a) i) Consider the sequence x[n] whose Fourier transform X(e^{jo}) is depicted for -π ≤ ω ≤ π in the figure below. Determine whether or not, in the time domain, x[n] is periodic, real, even, and/or of finite energy.

- ii) What is the transfer function and the impulse response of low pass RC circuit? (5)
- iii) Find the necessary and sufficient condition on the impulse response h[n] such that for any input x[n],

$$\max\{|x[n]|\} \ge \max\{|y[n]|\},$$
 where $y[n] = x[n]^* h[n]$. (4)

b) Analyze on recursive and non-recursive systems with an example.