-															
			I	Reg. No.										34	PUN
			P. Huston Com-	allian ne	900	n e		1211	Ore pr	1600		18,00		Ť	
		Mac	Quest	ion I	Pape	er C	od	e:	50	40	2				
			ch. DEGRE Co S6704 – RE	Semputer SOURC	eventh Scienc	Seme e and	ester Eng	r ginee NT I	ring				R 20	17 d	
	Time	e : Three Ho	ırs							N	Iaxi	mun	n:10	00 M	arks
				Ans	swer AI	LL que	estion	ns							
					PAR	T – A					(10×2	2=20	Ma	rks)
	1.	What is Fea	sible Region	in a LP	P?										
	2.	What is Sen	sitivity Ana	lysis?											
	3.	What is Dua	ıl Problem i	n LPP?											
3		What is Dua	$\Lambda/\Lambda\Lambda/$	1/1/	ting Pla	ane Al	lgorit	thm '	.(C	0	n	1		
	6.	What is Dyn	amic Progra	amming	?										
	7.	What is CPI	M?												
	8.	Write about	PERT.												
	9.	What do you	mean by T	ransport	ation P	roble	m?								
	10.	What do you	understan	d by Ass	ignmen	t Prok	olem	?							
					PAF	RT – E	3				(5×1	6=80	Ma	rks)
										ALL VALLE DE LA					

11. a) A manufacturer makes two components, T and A, in a factory that is divided into two shops. Shop I, which performs the basic assembly operation, must work 5 man-days on each component T but only 2 man-days on each component A. Shop II, which performs finishing operation, must work 3 man-days for each of component T and A it produces. Because of men and machine limitations, Shop I has 180 man-days per week available, while Shop II has 135 man-days per week.

50402

If the manufacturer makes a profit of Rs. 300 on each component T and Rs. 200 on each component A, how many of each should be produced to maximize his profit. Use simplex method.

- b) Explain the types of Models. Also explain the characteristics of a good model along with the principles involved in modeling.
- 12. a) Use dual simplex method to solve the following LPP:

$$\begin{array}{c} \text{Maximize Z} = -3X_1 - 2X_2 \\ \text{Subject to } X_1 + X_2 \geq 1 \\ X_1 + X_2 \leq 7 \\ X_1 + 2X_2 \geq 10 \\ X_2 \leq 3 \\ \text{and } X_1, \ X_2 \geq 0 \end{array}$$

- b) Elucidate the procedure for formulating a linear programming problems. Explain the advantages and limitations of linear programming.
- 13. a) Obtain an optimum basic feasible solution to the following transportation problem:

1	\٨/	To	Available			
	7	3	2	2		
From	2	1	3	3		
	3	4	6	5		
Demand	4	1	5	10		
		(OR)				

 Solve the following assignment problem for maximization given the profit matrix (profit in rupees):

		Machines						
		P	Q	R	\mathbf{S}			
	A	51	53	54	50			
Job	В	47	50	48	50			
	C	49	50	60	61			
	D	63	64	60	60			

-3-

50402

14. a) Solve the following LPP using dynamic programming approach:

$$Max Z = 3X_1 + 5X_2$$

subject to

$$X_1 \le 4$$

$$X_2 \le 6$$

$$3X_1 + 2X_2 \le 18$$

and

$$X_1, X_2 \ge 0$$

(OR)

b) Use Branch and Bound method to solve the following:

Maximize
$$Z = 2X_1 + 2X_2$$

Subject to

$$5X_1 + 3X_2 \le 8$$

$$X_1 + 2X_2 \le 4$$

and

$$X_1, X_2 \ge 0$$
 and integer.

15. a) The following table indicates the details of a project. The duration are in days. "a" refers to optimistic time, "m" refers to most likely time and "b" refers to pessimistic time duration.

Activity 1-2 1-3 1-4 2-4 2-5 3-4 4-5

9

.

0

Z

4

5

8

0

b 5

6

0

11 12

4

i) Draw the net work.

- ii) Find the critical path.
- iii) Determine the expected standard deviation of the completion time.

(OR

- b) Explain the following:
 - i) Difference between PERT and CPM
 - ii) Lagrangian method and Khun-Tucker conditions.