	Reg. No.:		05 08
Qu	estion Pap	er Code :	40920
B.E./B.Te	ech. DEGREE EX	AMINATION, A	APRIL/MAY 2018
	Seven	th Semester	
	Computer Scie	ence and Engine	ering
CS 6704	4 – RESOURCE M	IANAGEMENT	TECHNIQUES
	(Regul	lations 2013)	
Time: Three Hours			Maximum: 100 Marks
	Answer	ALL questions	
	A. O O P	PART – A	(10×2=20 Marks)
1. List any four app	lication areas of Op	eration Research	1.
2. Give any two Lim	itations of Linear p	programming.	
3. What do you und	erstand by degener	acy in a transpor	rtation problem ?
4. How do you conve	ert an unbalanced t	ransportation pr	oblem into a balanced?
5. Can you provide	various types of int	eger programmir	ng.
6. State the importa	ance of Integer Pros	gramming.	
7. What is Newton	Raphson method?		
8. Define Kuhn – Tu	acker conditions.		
9. Differentiate bety	ween PERT and CF	PM.	
10. Define Pessimist	ic time estimate in	PERT.	COM

PART - B

(5×16=80 Marks)

11. a) An automobile manufacturer makes auto-mobiles and trucks in a factory that is divided into two shops. Shop A, which performs the basic assembly operation must work 5 man-days on each truck but only 2 man-days on each automobile. Shop B, which performs finishing operation must work 3 man-days for each truck or automobile that it produces. Because of men and machine limitations shop A has 180 man-days per week available while shop B has 135 man-days per week. If the manufacturer makes a profit of Rs. 300 on each truck and Rs. 200 on each automobile, how many of each should he produce to maximize his profit?

(OR)

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

40920

-2-

b) Garden Ltd. has two product Rose and Lotus. To produce one unit of Rose, 2 units of material X and 4 units of material Y are required. To produce one unit of Lotus, 3 units of material X and 2 units of material Y are required. At least 16 units of each material must be used in order to meet the committed sales of Rose and Lotus Cost per unit of material X and material Y are Rs. 2.50 per unit and Rs. 0.25 per unit respectively.

Your are required:

i) To formulate mathematical model

(8)

ii) To solve it for the minimum cost (Graphically).

(8)

12. a) Find the initial basic feasible solution for the following transportation problem by VAM.

		D_1	D_2	D_3	D_4	Availability
	S_1	11	13	17	14	250
Origin	S_2	16	18	14	10	300
	S_3	21	24	13	10	400
	Requirements	200	225	275	250	
	(OP)					

(OR

 Solve the assignment problem for maximization given the profit matrix (profit in rupees).

M	_		١.		60	1	
1W 8	24	60	n	т	n	ρ	S

		P	Q	R	S				
۱Λ	A	51 47	53	54	50	16	300	0	
Job	В	47	50	48	50	111) .	0	_
	C	49	50	60	61				
	D	63	64	60	60				

13. a) Solve the following mixed integer programming problem by Gomory's cutting plane algorithm:

$$\label{eq:maximize} \begin{aligned} \text{Maximize Z} &= \mathbf{x}_1 + \mathbf{x}_2 \\ \text{Subject to} & & 3\mathbf{x}_1 + 2\mathbf{x}_2 \leq 5 \\ & & & \mathbf{x}_2 \leq 2 \end{aligned}$$

and $x_1, x_2 \ge 0$ and x_1 an integer.

(OR)

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

	40920
0	40040
-0-	

b) Use Branch and Bound technique to solve the following:

Maximize $Z = x_1 + 4x_2$

Subjects to constraints $2x_1 + 4x_2 \le 7$

$$5x_1 + 3x_2 \le 15$$

 $x_1, x_2 \ge 0$ and integers.

14. a) Illustrate Newton – Raphson method with suitable example.

(OR)

- b) Illustrate Kuhn Tucker Conditions with an example.
- a) Draw the network from the following activity and find the critical path and total duration of project.

Activity	Immediate Predecessors	Duration (Weeks)
A	and will be a market	3
В	-	8
С	A	9
D	В	6
Е	C C	10
F\A/\A	w binile	CC ¹⁴ PD
G VV VV	w.b _{c,p} ils	.UGIII
Н	F, G	. 10
I	E	5
J	I	4
K	Н	1 1
	(OR)	

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

40920		-4-		
b) A project ha	s the following a	ctivities and ot	her characteris	stics :
	te (in weeks)			
Activity	Preceding Activity	Most Optimistic	Most Likely	Most Pessimistic
A		4	7 7 1 X	16 .
В	# P-	1	5	15
C	A	6	12	30
D	A	2	5	8
E	C	5	11	17
bin Fired hours	D	3	6	15 wall (a 21
G	В	3	9	27
H (messy)	E, F	rivel pulse it	4-1-1	7 killon
I	G	4	19	28
Required:				
i) Draw the	PERT network	diagram		(3)
ii) Identify th	ne critical path			(3)
iii) Prepare th	ne activity sched	ule for the proje	ect	(3)
	the mean proje			(3)
	robability that t			weeks (4)
	WW.			
	37	1 10 1		. 5 11
3				