For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

Q	uestion Paper Co	ode: 40790	
CE 64 (Common to Aer Engineering/Industr	Tech. DEGREE EXAMINAT Third/Fourth Sen Mechanical Engin 451 – FLUID MECHANICS ronautical Engineering/Aut rial Engineering and Manag and Automation Engineerin B.E. Production Eng (Regulations 20	nester eering 3 AND MACHINE omobile Engineeri gement/Manufactu g/Mechatronics Er ineering)	RY ng/Industrial ring Engineering/
Time: Three Hours		Ma	ximum : 100 Marks
	Answer ALL ques	tions.	
	PART – A		(10×2=20 Marks)
1. What are compres	ssible and incompressible flui	ds?	
2. Draw the shear st	tress-velocity gradient profile	for Non Newtonian	fluids.
3. When a tube is sa	aid to be hydraulically smoot	S.CO	m
4. Define equivalen	t diameter of a non circular to	ıbe.	
5. What is dimension	onal homogeneity?		
6. List the methods	of dimensional analysis.		
7. What is suction h	nead of a pump?		
8. Define mechanica	al efficiency of a pump.		
9. How are hydraul	ic turbines classified?		
10. Define hydraulic	efficiency of a turbine.		
			10-10-120-7-1

For Notes, Syllabus, Question Papers: www.AllAbtEngg.com

40790 PART - B (5×13=65 Marks) 11. a) Explain the various properties of fluids. b) Explain the various classification of fluids with the help of a stress-strain graph. 12. a) An old water supply distribution pipe of 250 mm diameter of a city is to be replaced by two parallel pipes of smaller equal diameter having equal lengths and identical friction factor values. Find out the new diameter required. b) A pipeline of length 2000 m is used for power transmission. If 110.3625 kW power is to be transmitted through the pipe in which water having a pressure of 490.5 N/cm² at inlet is flowing. Find the diameter of the pipe and efficiency of transmission if the pressure drop over the length of the pipe is 98.1 N/cm². 13. a) The pressure difference $\Delta\,p$ in a pipe of diameter D and length l due to turbulent flow depends on the velocity V, viscosity $\mu,$ density ρ and roughness k. Using Buckingham's π theorem, obtain an expression for Δp . (OR) Explain the various types of similarities between model and prototype. 14. a) The internal and external diameters of the impeller of a centrifugal pump are 200 mm and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impleller per unit weight of water. b) Explain the following: i) Manometric efficiency. IIS.COL ii) Mechanical efficiency. iii) Overall efficiency. 15. a) Explain the parts of Pelton wheel. (OR) b) A pelton wheel is supplied with water under a head of 35 m at the rate of 40.5 kl/min. the bucket deflects the jet through an angle of 160° and the mean bucket speed is 13 m/s. Calculate the power and hydraulic efficiency of the PART - C (1×15=15 Marks) 16. a) Derive the Euler's equation of motion. (OR) b) Derive the work done by the centrifugal pump on water.