


Question Paper Code: 57283

## B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

**Electronics and Communication Engineering** 

EC 6304 - ELECTRONIC CIRCUITS -I

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A  $(10 \times 2 = 20 \text{ Marks})$ 

- 1. What is an operating point?
- 2. Give the methods of biasing a JFET.
- 3. What is the need of a load line?
- Draw a cascade amplifier and its ac equivalent circuit.
- 5. What is body effect in MOSFET ? How does it change the small-signal equivalent circuit of the MOSFET ?
- Give the general conditions under which common source amplifier would be used.
- 7. A bipolar transistor has parameter  $\beta_o$  = 150,  $C_\pi$  = 2 pF,  $C_\mu$  = 0.3 pf and is biased at  $I_{CQ}$  = 0.5 mA. Determine the beta cut off frequency.
- 8. Sketch the expanded hybrid  $\pi$  model of the BJT.
- 9. What is a current mirror circuit?
- 10. Sketch a MOSFET cascade current source and state its advantage.

1

57283

## $PART - B (5 \times 16 = 80 Marks)$

 (a) Compare the various methods of biasing using BJT in terms of their stability factors. (16)

OR

- (b) With neat diagrams, explain two bias compensation techniques and state its advantages and disadvantages. (16)
- 12. (a) What are the changes in the a.c characteristics of a common emitter amplifier when an emitter resistor and an emitter bypass capacitor are incorporated in the design? Explain with necessary equations. (16)

OR

- (b) (i) Calculate the small signal voltage gain of an emitter follower circuit. Given  $\beta$  = 100,  $V_{BE(on)}$  = 0.7V,  $V_A$  = 80 V,  $I_{CQ}$  = 0.793 mA,  $V_{CEQ}$  = 3.4 V. (8)
  - (ii) Draw and explain the operation of a darlington amplifier. (8)
- 13. (a) Design a JFET source follower circuit (Figure 13(a)) with a specified small signal voltage gain given  $I_{DSS} = 12 \text{mA}$ ,  $V_p = -4 \text{V}$ ,  $\lambda = 0.01 \text{ V}^{-1}$ . Determine  $R_s$  and  $I_{DQ}$  such that the small signal voltage gain is at least  $A_v = V_o/V_i = 0.90$ . (16)

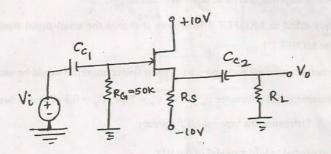



Figure 13(a)

OR

(b) Determine the small signal voltage gain of a common source circuit (Figure 13(b)) containing a source resistor. The transistor parameters are  $V_{TN}=0.8~V$ ,  $Kn=1~mA/V^2~and~\lambda=0. \tag{16}$ 

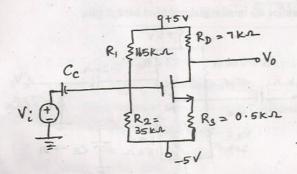



Figure 13(b)

14. (a) Determine the 3 dB frequencies and mid band gain of a cascade circuit. For the Figure 14(a) the parameters are V<sup>+</sup> = 10 V, V = -10 V, R<sub>s</sub> = 0.1 k $\Omega$ ,  $R_1 = 42.5 \text{ k}\Omega, R_2 = 20.5 \text{ k}\Omega, R_3 = 28.3 \text{ k}\Omega, R_E = 5.4 \text{ k}\Omega, R_c = 5 \text{ k}\Omega, R_L = 10 \text{ k}\Omega,$   $C_L = 0. \text{ The transistor parameters are } \beta = 150, V_{BE(ON)} = 0.7 \text{ V}, V_A = \infty, C_\pi = 35$  pF and  $C_\mu = 4 \text{ pF}.$ 

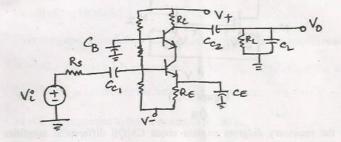



Figure 14(a) OR

- (b) The transistor in the figure. 14(b) has parameters  $\beta$  = 125,  $V_{BE(ON)}$  = 0.7 V,  $V_A$  = 200 V,  $C_\pi$  = 24 pF and  $C_\mu$  = 3 pF.
  - (i) Calculate the miller capacitor
  - (ii) Determine the upper 3 dB frequency
  - (iii) Determine the small signal mid band voltage gain

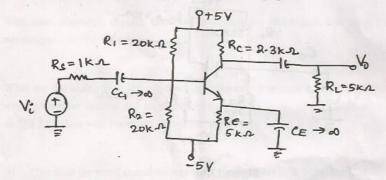



Figure. 14(b)

15. (a) For the circuit shown in the figure. 15(a) Let  $V^+ = 10$  V, and  $V^- = 0$  and the transistor parameters are  $V_{TN} = 2$  V,  $\frac{1}{2} \mu_n$   $C_{ox} = 20 \mu A/V^2$  and  $\lambda = 0$ . Design the circuit such that  $I_{ref} = 0.5$  mA and  $I_o = 0.2$  mA and  $M_2$  remains biased in the saturation region for  $V_{DS2} \ge 1$  V. (16)

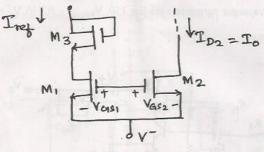



Figure 15(a) OR

(b) With the necessary diagram explain about CMOS differential amplifier and derive the CMRR. (16)

(16)