| K | leg. No. : | |---|---| | Quest | ion Paper Code : 50436 | | Electronic | EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester and Communication Engineering ELECTRONIC CIRCUITS – I (Regulations 2013) | | Time : Three Hours | Maximum: 100 Mark | | | vierive the resessory aquations to alcolate the value | | | Answer ALL questions | | 1. What is operating point? | PART – A (10×2=20 Marks) | | What is operating point? What is thermal runaway | | | | | | 3. What is bypass and coupli | | | | | | List the need for boot stray What is BiMOS? | pping in ampliner. | | 5. What is BiMOS ?6. A self biased P-channel JF supply voltage is 12 V. Dete | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_D , so that $I_D = 5$ mA | | 5. What is BiMOS ?6. A self biased P-channel JF supply voltage is 12 V. Dete | FET has a ninch off voltom of EV and I | | What is BiMOS ? A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. | FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ? | | 5. What is BiMOS? 6. A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 7. What is Miller effect? | FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ? | | 5. What is BiMOS? 6. A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 7. What is Miller effect? 8. What is unity gain amplified. | FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ? | | What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? | FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ? S and NMOS. | | 5. What is BiMOS? 6. A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 7. What is Miller effect? 8. What is unity gain amplified. 9. Draw the symbols of PMOS. 0. What is active loading? | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the | | What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplifue. Draw the symbols of PMOSO. What is active loading? a) With a neat diagram of the symbols. | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the | | What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the | | What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) With a neat diagram | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the | | What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) With a neat diagram | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the | | What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) With a neat diagram | FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the | 50436 12. a) With a neat diagram explain the small signal analysis of common emitter amplifier and derive the necessary equations to calculate the voltage gain, input and output impedance. (OR) - b) With a neat diagram explain the operation of differential amplifier and derive the necessary equations to calculate the CMRR. - a) With a neat diagram explain the small signal analysis of common source amplifier with a source resistance for MOSFET. (OR - b) With a neat diagram explain the source follower amplifier using MOSFET and derive the necessary equations to calculate the voltage gain, input and output resistance. - 14. a) Explain the high frequency response of common emitter amplifier and derive the necessary equations to calculate the upper 3-dB frequency. (OR) - b) Define f_{α} and f_{β} and f_{τ} . Also derive for f_{α} , f_{β} and f_{τ} with two source terminal and one sink terminal and derive for source and sink terminal currents as a function of reference current. - 15. a) Explain the basic MOSFET current steering circuit. (OR) - Explain and derive for AV for CG NMOS amplifier with following active loads Diode connected enhanced PMOS. - ii) Depletion PMOS. PART - C (1×15=15 Marks) 16. a) Design a differential amplifier using CMOS and calculate the CMRR. (OR b) What is cascade amplifier? Explain with necessary equations and explain how to determine its bandwidth.