K	leg. No. :
Quest	ion Paper Code : 50436
Electronic	EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester and Communication Engineering ELECTRONIC CIRCUITS – I (Regulations 2013)
Time : Three Hours	Maximum: 100 Mark
	vierive the resessory aquations to alcolate the value
	Answer ALL questions
1. What is operating point?	PART – A (10×2=20 Marks)
 What is operating point? What is thermal runaway 	
3. What is bypass and coupli	
 List the need for boot stray What is BiMOS? 	pping in ampliner.
5. What is BiMOS ?6. A self biased P-channel JF supply voltage is 12 V. Dete	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_D , so that $I_D = 5$ mA
5. What is BiMOS ?6. A self biased P-channel JF supply voltage is 12 V. Dete	FET has a ninch off voltom of EV and I
 What is BiMOS ? A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 	FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ?
 5. What is BiMOS? 6. A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 7. What is Miller effect? 	FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ?
 5. What is BiMOS? 6. A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 7. What is Miller effect? 8. What is unity gain amplified. 	FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ?
 What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? 	FET has a pinch off voltage of 5V and $I_{DSS}=12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D=5$ mA for ? S and NMOS.
 5. What is BiMOS? 6. A self biased P-channel JF supply voltage is 12 V. Dete and V_{DS} = 6 V. 7. What is Miller effect? 8. What is unity gain amplified. 9. Draw the symbols of PMOS. 0. What is active loading? 	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the
 What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplifue. Draw the symbols of PMOSO. What is active loading? a) With a neat diagram of the symbols. 	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the
 What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) 	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the
 What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) With a neat diagram 	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the
 What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) With a neat diagram 	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the
 What is BiMOS? A self biased P-channel JF supply voltage is 12 V. Deter and V_{DS} = 6 V. What is Miller effect? What is unity gain amplified. Draw the symbols of PMOS. What is active loading? a) With a neat diagram stability factor for BJT. (OR) With a neat diagram 	FET has a pinch off voltage of 5V and $I_{DSS} = 12$ mA. The ermine the values of resistors R_D and R_S , so that $I_D = 5$ mA for ? S and NMOS. PART – B (5×13=65 Marks) explain the voltage divider biasing and calculate the

50436

12. a) With a neat diagram explain the small signal analysis of common emitter amplifier and derive the necessary equations to calculate the voltage gain, input and output impedance.

(OR)

- b) With a neat diagram explain the operation of differential amplifier and derive the necessary equations to calculate the CMRR.
- a) With a neat diagram explain the small signal analysis of common source amplifier with a source resistance for MOSFET.

(OR

- b) With a neat diagram explain the source follower amplifier using MOSFET and derive the necessary equations to calculate the voltage gain, input and output resistance.
- 14. a) Explain the high frequency response of common emitter amplifier and derive the necessary equations to calculate the upper 3-dB frequency.

(OR)

- b) Define f_{α} and f_{β} and f_{τ} . Also derive for f_{α} , f_{β} and f_{τ} with two source terminal and one sink terminal and derive for source and sink terminal currents as a function of reference current.
- 15. a) Explain the basic MOSFET current steering circuit.

(OR)

- Explain and derive for AV for CG NMOS amplifier with following active loads
 Diode connected enhanced PMOS.
 - ii) Depletion PMOS.

PART - C

(1×15=15 Marks)

16. a) Design a differential amplifier using CMOS and calculate the CMRR.

(OR

b) What is cascade amplifier? Explain with necessary equations and explain how to determine its bandwidth.