www.allabtengg.com

				Reg. No. :					
				Question Paper Code: 80338					
		B.E./	B.Tecl	h. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.					
				Fourth Semester					
	*	Electronics and Communication Engineering							
				EC 6403 - ELECTROMAGNETIC FIELDS					
,	(Regulations 2013)								
ľ	Time: Three hours Maximum: 100 marks								
				Answer ALL questions.					
				PART A — $(10 \times 2 = 20 \text{ marks})$					
	1. State coulombs law.								
	2.	Wha		n electric potential? Write expression for potential due to an electric					
	3.			istance of a conductor.					
	4.		Give Laplace's and Poisson's equations. State Ampere's circuital law.						
	5.								
	6.		What is vector magnetic potential?						
	7.	self	Calculate the mutual inductance of two inductively tightly coupled coils with self-inductance of 25 mH and 100 mH.						
	8.	Give	Give the expression for Lorentz force equation. Define Phase velocity.						
	9.								
	displacement current density for field $E = 300 \sin 10^9 t \ V/m$.								
				PART B — (5 × 16 = 80 marks)					
	11	. (a)	(i)	State and Prove Stokes theorem. (8)					
			(ii)	Derive the expression for energy and energy density in static electric fields. (8)					
		43	0	Or A circular disc of radius 'a' meter is charged uniformly with a					
		(b)	(i)	charge of ρ c/m. Find the electric field intensity at a point h meter					
				from the disc along its axis. (10)					
			(ii)	Explain the concept of superposition principle of electric field intensity. (6)					

www.allabtengg.com

	12.	(a)	Der	ive an expression for capacitance of a coaxial cable.	(16)		
				Or			
		(b)	(i)	Derive an expression for Polarization 'P'.	(4)		
			(ii)	State and explain the electric boundary conditions between dielectrics materials.	en two (12)		
	13.	(a)	From Biot Savart's law obtain expression for magnetic field intensity and vector potential at a point P and distance ' R ' from infinitely long straight current carrying conductor. (16)				
				Or			
		(b)	(i)	Consider two identical circular current loops of radius 3 copposite current 20 Amps are in parallel planes, separated or common axis by 10 m. Find the magnetic field intensity at a midway between the two loops.	n their		
			(ii)	State Biot-Savart's law. Find the magnetic Field intensity	at the		
				origin due to current element $Id\vec{l} = 3\pi (\hat{a}_x + 2\hat{a}_y + 3\hat{a}_z) \mu$ A	l.m at		
				(3, 4, 5) in free space.	(8)		
	14.	(a)	(i)	A charged particle with velocity \vec{u} is moving in a monomorphism uniform field $\vec{E} = E\hat{a}_x V/m$ and $\vec{B} = B\hat{a}_y Wb/m^2$.			
				should \vec{u} be so that the particle experiences no net force on it	? (8)		
			(ii)	State and derive the magnetic boundary conditions between t magnetic mediums.	he two (8)		
2				Or			
		(b)	Derive the expression for inductance and magnetic flux density inside the solenoid. Calculate the inductance of the solenoid and energy stored when a current of 8 A flowing through the solenoid of 2m long, 10 cm diameter and 4000 turns. (16)				
	15.	(a)	(i)	State and prove Poynting's theorem and give its plinterpretation.	hysical (8)		
		1	(ii)	Derive Maxwell's equations for time varying fields.	(8)		
				Or			
	*	(b)	Der	ive the wave equation starting from Maxwell's equation force.	or free (16)		