

Question Paper Code: 77117

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Fourth Semester

Electronics and Communication Engineering

EC 6403 — ELECTROMAGNETIC FIELDS

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define line charge density. Write its unit.
- 2. Write the equation for Gauss law.
- 3. Define current density at a given point.
- 4. Write the relation between perfect conductor and electrostatic field.
- 5. Define magnetic scalar potential.
- 6. Write the relation between magnetic flux and magnetic flux density.
- 7. Write an expression for torque in vector form.
- 8. Write the expressions for energy stored in magnetic field.
- 9. State Faraday's law for a moving charge in a constant magnetic field.
- 10. State Poynting theorem.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Transform $\vec{A} = y\vec{a}_x + x\vec{a}_y + \frac{x^2}{\sqrt{x^2 + y^2}}\vec{a}z$ from cartesian to cylindrical co-ordinates. (8)
 - (ii) A charge +Q is located at A(-a,0,0) and another charge -2Q is located at B(a,0,0). Show that the neutral point also lies on the x-axis, where x = -5.83a.

- (b) (i) Derive coulomb's law starting from Gauss theorem. State any reasonable assumptions which you think are necessary for the derivation. (10)
 (ii) What maximum charge can be put on a sphere of radius 1m, if the breakdown of air is to be avoided? For break down of air, E = 3×10⁶ V/m. (6)
- 12. (a) (i) Each of two dielectrics (of relative permittivities $\in r_1$ and $\in r_2$ respectively) occupies one-half the volume of the annular space between the electrodes of a cylindrical capacitor such that the interface plane between the dielectrics is a rz plane. Show that the two dielectrics act like a single dielectric having the average relative permittivity. (8)
 - (ii) If $\vec{J} = \frac{1}{r^3} (2\cos\theta \, \vec{a}_r + \sin\theta \, \vec{a}_\theta) \, \text{A/m}^2$, calculate the current through
 - (1) a hemispherical shell of radius 20 cm
 - (2) a spherical shell of radius 10 cm.

Or

- (b) (i) A capacitor of capacitance C is charged to a voltage V. At a particular time, this capacitor is connected to a second capacitor also of value C, but containing no charge. What will be the final voltage?
 - (ii) A wire of dia 1 mm and conductivity 5×10⁷ S/m has 10²⁹ free electronics/m³ when an E-field of 10 mV/m is applied. Find charge density of free electronics, current density and current in the wire.
- 13. (a) (i) Magnetic vector potential $\vec{A} = \frac{-\rho^2}{4}\vec{a}_z$ Wb/m, calculate the total magnetic flux crossing the surface $\phi = \frac{\pi}{2}$, $1 \le \rho \le 2m$, $0 \le z \le 5m$. (8)
 - (ii) $\vec{H} = 3\cos x\vec{a}_x + z\cos x\,\vec{a}y$, A/m for $z \ge 0$ and $\vec{H} = 0$ for z < 0. This magnetic field is applied to a perfectly conducting surface in xy plane. Find current density on conductor surface. (8)

Or

- (b) (i) Obtain the expression for magnetic field intensity at the centre of a circular wire. (8)
 - (ii) At a point P(x, y, z) the components of vector magnetic potential \vec{A} are given as Ax = 4x + 3y + 2z; Ay = 5x + 6y + 3z; $A_z 2x + 3y + 5z$. Find \vec{B} at point P.
 - (iii) Explain the magnetic field intensity due to a straight wire. (4)

(8)

- 14. (a) (i) A steady current with normal component J_n is flowing across the interface between the two conducting media of conductivities σ_1 and σ_2 and permittivities ϵ_1 and ϵ_2 respectively. Show that there must be a surface charge density on the interface. Find its magnitude. (6)
 - (ii) Find the magnetic field of current in a straight circular cylindrical conductor of radius "a", and express the magnetic field as a vector in terms of current density, \vec{J} . (10)

Or

- (b) A composite conductor of cylindrical cross section used in overhead lines is made of a steel inner wire of radius R_i and an annular outer conductor of radius R_o , the two having electrical contact. Find the magnetic field within the conductors and the internal self inductance per unit length of the composite conductor. (16)
- 15. (a) (i) Is it possible to construct a generator of emf which is constant and does not vary with time by using the principle of EM inductor?

 Explain. (6)
 - (ii) In a parallel plate capacitor, a time-varying current $i(t) = I_m \cos wt$ flows through its leads. The places have the surface area S and the distance between them is d. show that the displacement current through the capacitor is exactly I_m coswt. Ignore the fringing effects. (10)

Or

- (b) (i) If $\vec{D} = 20x \vec{a}_x 15y \vec{a}_y + kz \vec{a}_z \mu C / m^2$, find the value of K to satisfy Maxwell's equations for region $\sigma = 0$ and $\rho_v = 0$. (4)
 - (ii) If $\vec{H} = (3x\cos(3+6y\sin\alpha))\vec{a}_z$, find \vec{J} if fields are invariant with time. (4)
 - (iii) Derive the expression for total power flow in a coaxial cable. (8)

