

Reg. No.:

Question Paper Code: 50789

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fifth Semester

Computer Science and Engineering MA 6566 - DISCRETE MATHEMATICS (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART-A

(10×2=20 Marks)

- 1. Find the truth value of $\forall x(x^2 \ge x)$ if the universe of discourse consists of all real numbers. Also write the negation of the given statement.
- If the universe of discourse consists of all real numbers then translate the following formula into a logical statement:

$$\forall x \exists y \forall z \Big[(x > 0) \rightarrow [y^2 = x = (-y)^2] \Big] \land \Big[(z^2 = x) \rightarrow (z = y \lor -y) \Big]$$

- 3. How many cards must be selected from a standard deck of 52 cards (4 different suits of equal size) to guarantee that at least three cards of the same suit are chosen?
- 4. Write the particular solution of the recurrence relation $a_n = 6a_{n-1} 9a_{n-2} + 3^n$.
- Draw a graph that is an Euler graph but not Hamiltonian.
- 6. Can you draw a graph of 5 vertices with degree sequence 1, 2, 3, 4, 5?
- 7. Define 'kernel of homomorphism' in a group.
- 8. If $\langle R, +, . \rangle$ is a ring then prove that a. $0 = 0, \forall a \in \mathbb{R}$ and 0 is the identity element in R under addition.
- 9. State modular inequality of lattices.
- 10. Write the only Boolean algebra whose Hasse diagram is a chain.

												PA	AR7	-]	В			(5×16=8	0 Mark	s)
11.	a)	i)	tri	ie t	ha	at al	1 co	fol	lowir dian	ng t	wo re f	sta	nter ny"	nen	its a l "Th	re logic iere are	cally eq	uivale comed	nt : "It : ians wh	o are	8)
		ii)	Pr	Prove that the conditional statement $[(P \rightarrow Q) \land (Q \rightarrow R)] \rightarrow (P \rightarrow R)$												is a					
			ta	uto	log	y u	sin	g lo	gica	leç	quiv	ale	ence	es.		gartug	ero'i)				8)
	b)	i)	no	tre	ad	the	e pc	ok'	and	"E	ver	VO1	ne i	n th	is c	ass pas	A stude	first	exam" i	s has mply book". (0)
and and		ii)	In tru per op	an oplo pos	isl an e fi ite	and tom	hei the pes	ere r op at i ". D	are to oposi sland efine	tes	ki, K	nd nav	of in res Bi	nha (wh	bita o al	nts Kn ways lie ht" and	ights (v e). Let A l B says v and u	ho alvand	ways te B be an	ll the	8)
			na	tur	e o	f A	an	d B												(8	8)
12.	a) A valid code word is an n-digit decimal number containing even number of If a _n denotes the number of valid code words of length n then find an exp formula for a _n using generating functions.											of 0's.									
		101	щи	ıa ı	or	an	usı			rat	ang	, fu	nct	ions	S.					(10	6)
								(0)	K)												
	b)	i)	If I	Hn	de	not	e h	arn	nonic	nı	ımb	ers	s, tl	nen	pro	ve that	H ₂ n≥	$1+\frac{n}{n}$	using		
							-	-	uctio			h	Ϋ́I	r	51	IC	0	2	m	/11	2)
		ii)	A to coutak Sparing	ota en ani	l o e in co sh 2 s	f 12 Fr urs and tud	end es i l Ru	stu h a in b issi	nd 12 ooth 2 an ar ave t	s h 14 l Spa nd :	hav anis 14 l en a	e ta sh a nav	ake: and e ta eas	Fre ker	cour ench cou e of	se in R , 23 ha rses in Spanis	panish, ussian. ave take both Fr h, Fren ree lan	Furth en cou ench a ch and	er, 103 rses in and Rus d Russi	have both	
13.	a)	i)	Ex	am	ine	e w	het.	her	the y ma	foll	ow	ing	tw e is	o gr	aph	s G an	d G' as	sociat	ed with		
			0	1	0	1	0	0		0	1	0	0	1	0						
			1	0	1	0	0	1		1		1	0	0	0						
			0	1	0	1	0	0	and	0	1	0	1	0	1						
			1	0	1	0	1	0	and	0	0	1	0	1	0					(10	11
										1	0	0	1	0	1					(10	")
			0	1	0	0	1	0		0	0	1	0	1	0						
		(ii)	Dis	C118	ss t	he	vai	iou	s gra	ph	in	var	ian	tsr	rese	erved b	y isomo	rnhic	granhe	. (6	13
		11)			-																

		-3-	50789
b) i)	Prove that a simple graph with n vertices and k components can r	not have
		more than $\frac{(n-k)(n-k+1)}{2}$ edges.	(10)
	ii) Prove that a simple graph is bipartite if and only if it is possible t one of two different colors to each vertex of the graph so that no two vertices are assigned the same color.	
14. a	300	G is a group of order n and H is a sub-group of G of order m, then pullowing results:	rove the
	i) a∈G is any element, then the left coset aH of H in G consists of a	
	::	elements as in H.) Any two left cosets of H in G is either equal or disjoint.	(4)
	11.00) The index of H in G is an integer.	(4)
		(OR)	
b) i	Examine whether $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \neq 0 \in \mathbb{R} \right\}$ is a commutative group	
		matrix multiplication, where R is the set of all real numbers.	(10)
	ii	 Prove that (Z₅, X₅) is a commutative monoid, where X₅ is the multipmodulo 5. 	plication (6)
15. a	i) i	i) Let $\langle L, \leq \rangle$ be a lattice in which * and \oplus denote the operations of r	neet and
		join respectively. For any $a,b\in L,a\leq b\Leftrightarrow a*b=a\Leftrightarrow a\oplus b=b$.	(8)
	ii	i) Prove that every chain is a distributive lattice.	(8)
		(OR)	
b) i	i) In a Boolean algebra B, if a, b, c∈ B, then prove that	
		$a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow a' \oplus b = 1 \Leftrightarrow b' \le a'$.	(12)
	i	i) Let $\langle L, \star, \oplus \rangle$ and $\langle S, \wedge, \vee \rangle$ be any two lattices with the partial ord	erings ≤
		and ≤' respectively. If g is a lattice homomorphism, then g prese partial ordering.	rves the