	ALCOHOLD TO SERVICE			
Reg. No.:				

Question Paper Code: 77116

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Fourth Semester

Electronics and Communication Engineering

EC 6402 — COMMUNICATION THEORY

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Draw the AM modulated wave for modulation index = 0.5 and its spectra.
- 2. Define heterodyning.
- 3. Define lock in range and dynamic range of a PLL.
- 4. A carrier is frequency modulated with a sinusoidal signal of 2 kHz resulting in a maximum frequency deviation of 5KHz. Find the bandwidth of the modulated signal.
- 5. Define the Q factor of a receiver.
- 6. Write the equation for the mean square value of thermal noise voltage in a
- 7. What is preemphasis? Why it is needed?
- 8. Define threshold effect in AM systems.
- Define entropy and find the entropy of a DMS with probability s1=1/2, s2=1/4 and s3=1/4.
- 10. State Shannon's Channel capacity theorem.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Explain with suitable diagrams the generation of AM using squarelaw method. Also derive its efficiency.
 - (ii) Explain the demodulation of AM using envelope detection.

Or

- (b) (i) Explain with block diagram the super heterodyne receiver.
 - (ii) Explain the Hilbert Transform with an example.
- 12. (a) An angle modulated signal is described by

 $X_c(t) = 10 \cos \left[2\pi (10^6)t + 0.1 \sin(10^3)\pi t \right].$

- (i) Considering $X_c(t)$ as a PM signal with kp=10, find m(t). (8)
- (ii) Considering $X_c(t)$ as a FM signal with kp=10 π , find m(t). (8)

Or

- (b) (i) Explain with diagrams the generation of FM using direct method.
 - (ii) With the phasor representation explains the foster seeley discriminator.
- 13. (a) (i) Define noise. Explain the various types of internal noise.
 - (ii) Explain with derivation the effect of noise in cascaded amplifier circuit.

Or

- (b) Derive the SNR performance of DSB system and the AM system. Also prove that the output SNR in AM is at least 3 dB worse than that of DSB system.
- 14. (a) (i) Let X and Y be real random variables with finite second moments. Prove the Cauchy-Schwarz inequality. $(E[XY])^2 \le E[X^2]E[Y^2]$. (8)
 - (ii) Differentiate the strict-sense stationary with that of wide sense stationary process. (8)

Or

- (b) (i) Let X(t) and Y(t) be both zero-mean and WSS random processes. Consider the random process z(t) = X(t)+Y(t). Determine the auto correlation and power spectrum of z(t) if X(t) and Y(t) are jointly WSS.
 (8)
 - (ii) Let $X(t) = A \cos(\omega t + \Phi)$ and $Y(t) = A \sin(\omega t + \Phi)$, where A and ω are constants and Φ is a uniform random variable $[0,2\pi]$. Find the cross correlation of x(t) and y(t).
- 15. (a) A DMS has six symbols $x_1, x_2, x_3, x_4, x_5, x_6$ with probability of emission 0.2, 0.3, 0.11, 0.16, 0.18, 0.05 encode the source with Huffman and Shannon fano codes compare its efficiency. (16)

Or

- (b) (i) Derive the mutual information I(x;y) for a binary symmetric channel, when the probability of source is equally likely and the probability of channel p=0.5. (6)
 - (ii) For a source emitting three symbols with probabilities $p(X) = \{1/8, 1/4, 5/8\}$ and p(Y/X) as given in the table, where X and Y represent, the set of transmitted and received symbols respectively, compute H(X), H(X/Y) and H(Y/X). (10)

