| Reg. No. : | |---| | Question Paper Code: 52877 | | B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019. | | Seventh Semester | | Computer Science And Engineering | | CS 6704 – RESOURCE MANAGEMENT TECHNIQUES | | (Regulation 2013) | | Time: Three hours Maximum: 100 marks | | Answer ALL questions. | | PART A — $(10 \times 2 = 20 \text{ marks})$ | | 1. What is OR techniques? Where it can be used? | | 2. Define following terms. (a) Solution (b) Feasible solution. | | Explain degeneracy in transportation problem. White According to the Mark Washington Community of the Mark Mark Mark Mark Mark Mark Mark Mark | | Write down the steps of North West Corner Method for solving transportation
problem. | | 5. Why integer programming is needed? Generalize it. | | 6. Summarize the main disadvantage of the branch and bound method. | | 7. List the uses of classical optimization theory. | | 8. Describe the concepts of Lagrangian multiplier. | | 9. Illustrate the primary rules for Network construction. | | 10. Point out the uses of GANTT chart. | | Contract to the second | | | PART B $$-$$ (5 × 13 = .65 marks) 11. (a) Solve by Simplex Method (i) $\text{Max } Z = 3x_1 + 4x_2$ Subject to the conditions $$2x_1 + 4x_2 \le 120$$; $2x_1 + 2x_2 \le 80$; $x_1 \ge 0, x_2 \ge 0$. (ii) Maximize $Z = 3x_1 + 2x_2 + 5x_3$ Subject to Constraints $$\begin{array}{lll} x_1+x_2+x_3\leq 9; \; 2x_1+3x_2+5; & \; x_3\leq 30; & \; 2x_1-x_2-x_3\leq 8 & \; \text{and} \\ x_1,x_2,x_3\geq 0 \; . & & \end{array}$$ Or (b) The advertising alternative for a company include television, radio, and newspaper advertisements. The costs and estimates for audience coverage are given in the table below. Television Radio Newspaper Cost per advertisement $\pounds 2,000^{\circ}$ $\pounds 300$ $\pounds 600$ Audience per advertisement 1,00,000 18,000 40,000 The local newspaper limits the number of weekly advertisements from a single company to ten. Moreover, in order to balance the advertising among the three types of media, no more than half of the total number of advertisements should occur on the radio, and at least 10% should occur on television. The weekly advertising budget is £18,200. How many advertisements should be run in each of the three types of media to maximize the total audience? 12. (a) Find the initial feasible solution for the following problem using North West Corner Method. Optimize solution using stepping stone. | Consumption centres | | V | Varel | house | Requirements
(Units) | | |---------------------|----------|----|-------|-------|-------------------------|----| | | | P1 | P2 | P3 | P4 | | | | - C1 . | 10 | 4 | 9 | 5 | 25 | | | C2 | 6 | 7 | 8 | 7 | 25 | | | C3 | 3 | 8 | 6 | 9 | 25 | | | Capacity | 9 | 28 | 20 | 18 | | | | | | Ove | | | | (b) Solve by Vogel's Approximation Method. | Plants | | Supply | | | | | |--------|-----|--------|----|----|----|-----| | | W1 | W2 | W3 | W4 | W5 | | | P1 | 20 | 28 | 32 | 55 | 70 | 50 | | P2 | 48 | 36 | 40 | 44 | 25 | 100 | | P3 | 35 | 55 | 22 | 45 | 48 | 150 | | Demand | 100 | 70 | 50 | 40 | 40 | 300 | 52877 13. (a) Discuss Gomary's Cutting plane method and solve it. Maximize $z=x_1+4x_2$ Subject to $2x_1+4x_2\leq 7,\, 5x_1+3x_2\leq 15;$ $x_1,\, x_2$ are integers ≥ 0 . Or (b) Summarize and find the optimum integer solution to the following all IPP- Maximize $z = x_1 + 2x_2$ Subject to $2x_2 \le 7$; $x_1 + x_2 \le 7$; $2x_1 \le 11$; $x_1, x_2 \ge 0$ and integers. 14. (a) Discuss the Non Linear programming problem and solve by using Legrange multipliers with equality constraints. Maximize $Z = 4x_1 - 0.1x_1^2 + 5x_2 - 0.2x_2^2$ Subject to $x_1 + 2x_2 = 40$; $x_1, x_2 \ge 0$ Or - (b) Describe in detail about the Newton-Raphson method. - 15. (a) A project has the following characteristics. Construct a own PERT network. Find critical path and variance for each event and also analyze it. Or (b) A project consists of the following activities as shown in table. The duration in weeks and the manpower requirement for each of the activities are also summarized in the same table. Find and give the project schedule which minimizes the peak manpower requirement and also minimizes period-to-period variation in manpower requirement (number of iteration = 2). | Activity | Duration | Manpowe | | | |----------|----------|----------|--|--| | | (months) | Required | | | | 1-2 | 5 | 12 | | | | 1-3 | 6 | 4 | | | | 2-3 | 8 | 6 | | | | 2-4 | 7 | 3 | | | | 3-4 | 4 | 8 | | | | 2-5 | 1 | 4 | | | | 3-5 | 6 | 3 | | | | 5-6 | 7 | 4 | | | | 4-6 | 5 | 2 | | | | | | | | | 52877 PART C — $(1 \times 15 = 15 \text{ marks})$ 16. (a) Unit profit of five salesmen in four places are given below S₁ S₂ S₃ S₄ S₅ Available 5 6 4 2 6 Demand 40 30 40 40 30 Solve the problem to maximize the profit. (b) Solve the integer programming problem Maximize $Z = 80x_1 + 45x_2$ Subject to $x_1 + x_2 \le 7$ $12x_1 + 5x_2 \le 60$ and $x_1, x_2 \ge 0$ and integer. www.binils.com 52877