Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

	Reg. No. :
	Question Paper Code: 52868
В.	E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY, 2019.
	Fifth/Eighth Semester
	Computer Science and Engineering
	CS 6503 — THEORY OF COMPUTATION
	(Common to Information Technology)
m: mi	(Regulation 2013)
Time: Three	Takinan . 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1. Constru	ct Finite Automata for the regular expression : $(a b) * abb$.
2. Prove th	$\text{nat } L = \{0^n 1^n \mid n > = 1\} \text{ is not a regular language.}$
3. What is	ambiguous grammar? Give example.
$E \rightarrow E$	unambiguous grammar for the following grammar : $ + E \mid E * E \mid (E) \mid id. $
	Push Down Automata (PDA).
	meant by Instantaneous Description for a PDA.
	recursive enumerable language? Give example. ne applications of Turing Machine.
	unsolvable problem? Give example.
	Primitive Recursive Function? Give example.
	PART B — $(5 \times 13 = 65 \text{ marks})$
11. (a) Co int	instruct E-NFA for the regular expression (01 \mid 10) *101 and convert it to DFA.
	Or
	aborate the steps to convert the DFA into Regular expression with itable example. (13)

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

12.	(a)	(i)	Convert the following CFC into Chickerk Name 1 De	(10)
12.	(a)	(1)	Convert the following CFG into Griebach Normal Form:	(10)
			$X_1 \rightarrow X_2 X_3$	
			$X_2 \rightarrow X_3 X_1 \mid b$	
			$X_3 \rightarrow X_1 X_2 \mid a$	
		(ii)	Remove \in - production from the following grammar	
			$S \to ASA \mid aB \mid b, A \to B, B \to b \mid \epsilon$.	(3)
			Or	
	(b)	(i)	Write short notes on Chomsky hierarchy of grammar.	(5)
		(ii)	Convert the following grammar in to CNF:	(5)
			$S \rightarrow bA \mid aB$	
			$A \rightarrow bAA \mid aS \mid a$	
			$B \rightarrow aBB \mid bS \mid b$	
		(iii)	Eliminate left recursion for the following grammar:	(3)
			$A \to A + B \mid A * B \mid B \mid a$	
13.	(a)	(i)	Construct PDA for $L = \{a^n b^n \mid n > = 0\}.$	(6)
		(ii)	Construct PDA for $L = \{ w \in (a \mid b)^* \mid \text{where 'w' is a PALINDR'} \}$	OME}.
	V	//	ww.binils.com	(7)
	(b)	(i)	Construct PDA for $L = \{0^n \ 1^m \ 2^{n+m} \mid \text{where } n, m > = 1\}.$	(6)
		(ii)	Illustrate the equivalence between PDA and CFL with exam	nple. (7)
14.	(a)		cuss about the techniques for constructing the various types of thine.	of Turing (13)
			Or	
	(b)	(i)	Construct Turing Machine for $L = \{ w\varepsilon \ (a \mid b)^* \mid \text{where 'w' is a PALINDRO} \}$	ME}. (8)
		(ii)	Construct Turing Machine for $L = \{1^n \ 2^n \ 3^n \mid \text{where } n >= 1\}.$	(5)
			2	52868

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

15.	(a)	(i)	Explain in detail about the various properties of recursive and recursive enumerable languages. (8)	350
		(ii)	How does a primitive recursive function help to identify computable function. (5)	
			Or	
	(b)	Doc		
	(0)	exai	cribe in detail about NP-Hard and NP-Complete problems with mple. (13)	
			PART C — (1 × 15 = 15 marks)	
16.	(a)	(i)	Construct Turing machine for language over the input alphabet $\Sigma = \{a, b\}$ to shift the input symbol two positions left. (5)	
		(ii)	Analyze and brief the concept of tractable and intractable problems. (10)	
			Or	
	(b)	(i)	State and prove the pumping lemma for CFL. (7)	
		(ii)	Write an algorithm for minimization of DFA. (8)	
	1	\ \'	ww.binils.com	
	\	\	ww.binils.com	
	\	\	ww.binils.com	
	\	\	ww.binils.com	
	\	\ \'	ww.binils.com	
	\	\ \'	ww.binils.com	
	\	\ \'	ww.binils.com	
	\	\	ww.binils.com	
	\	\ \'	ww.binils.com	
	\	\ \'	ww.binils.com	
	\	\ \'	ww.binils.com	
	\	\		
	\	\ \'		