
99

UNIT III

Processor and Control

Basic MIPS implementation Building data path Control Implementation scheme

Pipelining Pipelined data path and control Handling Data hazards & Control

hazards Exceptions.

3.1 Basic MIPS Implementation

 MIPS have three kinds of core instruction:

1. The arithmetic-logical instructions add, sub, and, or, and slt

2. The memory-reference instructions load word (lw) and store word

(sw)

3. The branch instructions- branch equal (beq) and jump (j), which we

add last

 To implement the three types we have same method,but independent of the

exact class of instruction. For every instruction, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code

and fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the

registers to read. For the load word instruction, we need to read only

one register, but most other instructions require that we read two

registers.

 These two steps are common for all instruction set.

 After these two steps the actions required to complete the instruction depend on

the instruction class.

 The simplicity and regularity of the instruction set simplifies the

implementation by making the execution of many instruction classes similar.

 For example, all instruction classes, except jump, use the arithmetic-logical

unit (ALU) after reading the registers.

100

 The memory-reference instructions use

1. The ALU for an address calculation

2. The arithmetic-logical instructions for the operation execution

3. Branches for comparison.

 After using the ALU, the actions required to complete various instruction

classes differ.

 A memory-reference instruction will need to access the memory either to write

data for a store or read data for a load.

 An arithmetic-logical instruction must write the data from the ALU back into a

register.

 Branch instruction need to change the next instruction address based on the

comparison; otherwise the PC should be incremented by 4 to get the address of

the next instruction.

Figure: An abstract view for the implementation of the MIPS.

 It shows most flow of data through the processor but it omits two important

aspects of instruction execution.

1. In the below figure, it shows data going to a particular unit as

coming from two different sources.

2. Several units must be controlled depending on the type of

instruction.

101

 All instructions start by using the program counter to supply the instruction

address to the instruction memory.

 After the instruction is fetched, the register operands used by an instruction are

specified by fields of that instruction.

 Once the register operands have been fetched, they can be operated to do the

following tasks:

1. To compute a memory address (for a load or store)

2. To compute an arithmetic result (for an integer arithmetic-logical

instruction)

3. To compare for a branch.

 If the instruction is an arithmetic-logical instruction, the result from the ALU

must be written to a register.

 If the operation is a load or store, the ALU result is used as an address to either

store a value from the registers or load a value from memory into the registers.

 The result from the ALU or memory is written back into the register file.

Branch instruction require the use of the ALU output to determine the next

instruction address, which comes from either the ALU or from an adder that

increments the current PC by 4.

The thick lines interconnecting the functional units represent buses, which

consist of multiple signals.

 The arrows are used to guide the reader in knowing how information flows.

Since signal lines may cross, we explicitly show when crossing lines are

connected by the presence of a dot where the lines cross.

 It shows most of the data flow through the processor has two aspects for

instruction execution:

 Above figure shows data going to a particular unit as coming from two sources.

 Several units must be controlled depending on the type of instruction.

 First, the value written into the PC can come from one of two adders, and the

data written into the register file can come from either the ALU or the data

memory.

102

 In practice, these data lines cannot simply be wired together; we must add an

element that chooses from among the multiple sources and steers one of those

sources to its destination.

 This selection is commonly done with a device called a multiplexer, although

this device might better be called a data selector.

 The multiplexor is a combinational circuit which selects from among several

inputs based on the setting of its control lines.

 The control lines are set based on information taken from the instruction being

executed.

 Second, several of the units must be controlled depending on the type of

instruction.

 For example, the data memory must read on a load and write on a store. The

register file must be written on a load and an arithmetic-logical instruction.

 ALU must perform one of several operations.

 To overcome these problems we can use another circuit with some

modification made in previous circuit.

 Compared to previous diagram, in this diagram we add three multiplexers and

one major unit as control lines.

Control unit:

 A control unit that has the instruction as an input is used to determine how to

set the control lines for the functional units and two of the multiplexors.

Function of third multiplexer:

 The third multiplexer, which determines whether PC + 4 or the branch

destination address is written into the PC, is set based on the zero output of the

ALU, which is used to perform the comparison of a beq instruction.

 The regularity and simplicity of the MIPS instruction set means that a simple

decoding process can be used to determine how to set the control lines.

Function of multiplexer:

 The top multiplexer controls what value replaces the PC (PC + 4 or the branch

destination address).

103

 The multiplexer i

output of the ALU and a control signal that indicates that the instruction is a

branch.

 The middle multiplexer is used to direct the output of the ALU or the output of

the data memory for writing into the register file.

 Finally, the bottommost multiplexer is used to determine whether the second

ALU input is from the registers or from the offset field of the instruction.

Function of Control lines:

 The control lines are straightforward and determine the operation performed at

the ALU.TheALU can perform following operations:

1. Data memory read.

2. Data memory writes.

3. Write operation on registers.

 Control lines determine which operation is performed by the ALU. Control unit

is used to control the actions taken by different instruction classes.

Figure: The basic implementation of the MIPS.

104

3.2 Building A Datapath

 To start a datapath design we must list the major components required to

execute each class of MIPS instruction.

 Components required to form a data path is known as datapath elements.

Datapath element:

 A functional unit used to operate on or hold data within a processor.

 In the MIPS implementation the datapath elements include the instruction and

data memories, the register file, the arithmetic logic unit (ALU), and adders.

 The state elements are the instruction memory and the program counter.

 The instruction memory need only provide read access because the data path

does not write instructions.

Instruction memory:

 The instruction memory is called as combinational element because it will

perform only read, the output at any time reflects the contents of the location

specified by the address input, and no read control signal is needed.

Figure: Two state elements are needed to store and access instructions, and an

adder is needed to compute the next instruction address.

Program counter (PC):

 The program counter is a 32-bit register that will be written at the end of every

clock cycle and thus does not need a write control signal.

 The program counter is a register containing the address of the instruction in

the program being executed.

105

Adder:

 The adder is a combinational elementused to add two 32-bit inputs and place

the result on its output.

Figure : A portion of the datapath used for fetching instructions and incrementing

the program counter.

Fetching phase:

 To execute any instruction, we must start by fetching the instruction from

memory.

 To prepare for executing the next instruction, we must also increment the

program counter so that it points at the next instruction by incrementing the PC

by 4 bytes.

3.2.1 Arithmetic logical instructions

It is also called as R-format or R-type instructions.

 To perform an ALU operation these instructions read two registers and writes

the result on one registers. It performs operations on the content of the

registers.

 This instructions performs operations like add, sub, and, or, and slt.

 The processors having 32 general-purpose registers and some special purpose

registers. General purpose and special purpose registers are stored in separate

space of memory.

106

 -purpose registers are stored in a structure called a

register file.

Register file:

 Register file is a state element that consists of a set of registers that can be read

and written by supplying a register number to be accessed.

 The register file contains the register state of the machine.

R-format instructions:

 The R-format instructions have three register operands to perform ALU

operation.

 Two register data are read from the register file and write one data word into

the register file for each instruction.

 Register number specifies which data as to be read from which register present

in the register file.

 To write a data word, we will need two inputs:

1. One to specify the register number to be written and

2. One to supply the data to be written into the register.

 The register file always outputs the contents of whatever register numbers are

on the Read register inputs. Write operation are controlled by the write control

signal and it must be asserted for a write to occur at the clock edge.

Figure : The two elements needed to implement R-format ALU operations

 There are two elements needed to implement R-format ALU operations are:

1. Register file

2. ALU

107

Register file:

 The register file contains all the registers and has two read ports and one write

port.

 The register file always outputs the contents of the registers corresponding to

the Read register inputs on the outputs.

 Register write must be explicitly indicated by asserting the write control signal.

 Write operations are edge-triggered, so that all the write inputs must be valid at

the clock edge.

 The register number inputs are 5 bits wide to specify one of 32 registers (32 =

25).

 The data input and two data output buses are each 32 bits wide.

ALU:

 The ALU takes two 32-bit inputs and produces a 32-bit result as well as a 1-bit

signal if the result is 0.

 The operation to be performed by the ALU is controlled with the ALU

operation signal and it is 4 bits wide.

 Zero detection output of the ALU is used to implement branches.

3.2.2 MIPS Instructions

 Consider the MIPS load word and store word instructions, which have the

general form

lw $t1,offset_value($t2)

sw $t1,offset_value ($t2).

 These instructions will compute a memory address by adding the base register,

which is $t2, to the 16-bit signed offset field contained in the instruction.

Memory address=Base register + 16 bit signed offset field

 If the instruction is a store, the value to be stored must also be read from the

register file where it resides in $t1.

 If the instruction is a load, the value read from memory must be written into the

register file in the specified register, which is $t1.

 Units need to implement load and store instruction are:

1. Register file

108

2. ALU

3. Sign-extension Unit

4. Data memory Unit

Sign-extension Unit:

 To increase the size of a data item by replicating the high-order sign bit of the

original data item in the high order bits of the larger destination data item.

 This unit will have 16-bit offset field in the instruction and extend to a 32-bit

signed value.

Data memory Unit:

 The memory unit is a state element with inputs for the address and the write

data, and a single output for theread result.

 There are separate read and write controls, although only one of these may be

asserted on anygiven clock.

 The memory unit needs a read signal, since, unlike the register file, reading the

value of aninvalid address can cause problems

Figure: The two units needed to implement loads and stores

3.2.3 Branch Instruction

There are two types of Branch Instruction:

1. Branch taken

2. Branch not taken

109

Branch taken:

 If the branch condition is satisfied the program counter (PC) becomes the

branch target. All unconditional branches are taken branches.

Branch not taken:

 If the branch condition is false and the program counter(PC) becomes the

address of the instruction that sequentially follows the branch.

 The beq instruction has three operands, two registers that are compared for

equality, and a 16-bit offset used to compute the branch target addressrelative

to the branch instruction address. The beq instruction has the form

beq $t1,$t2,offset.

 To implement this instruction, we must compute the branch target address by

adding the sign-extended offset field of the instruction to the PC.

Branch target address:

Branch target address = sign-extended offset field of the instruction + PC.

 The address specified in a branch, which becomes the new program counter

(PC) if the branch is taken.

Figure : The data path for handling branch

110

 When the condition is true (i.e., the operands are equal), the branch target

address becomes the new PC, and it is called branch istaken.

 If the operands are not equal, the incremented PC should replace the current PC

and it is called branch is not taken.

 Thus, the branch data path must do two operations: compute the branch target

address and compare the register contents.

 To compute the branch target address, the branch data path includes a sign

extension unit and an adder.

 To perform the compare, we need to use the register file.

 Adder circuit is used to compute the branch target and it is the sum of

 Incremented PC and the sign extended lower 16 bits of the instruction shifted

left 2 units.

 The unit labeled Shift left 2 is simply a routing of the signals between input

and output that adds 00two to the low-order end of the sign-extended offset

field; no actual shift hardware is needed because the amount of the shift is

constant.

 Since we know that the offset was sign-extended from 16 bits and the shift will

throw away only sign bits.

 Control logic is used to decide whether the incremented PC or branch target

should replace the PC based on the Zero output of the ALU.

3.2.4 Creating a Single Datapath

 The datapath components needed for the individual instruction classes are can

combine and formed into a single datapath and add the control to complete the

implementation.

 The single datapath will execute all instructions in one clock cycle.

 This means that no datapath resource can be used more than once per

instruction, so any element needed more than once must be duplicated.

 Although some of the functional units will need to be duplicated, many of the

elements can be shared by different instruction flows.

111

 To share a datapath element between two different instruction classes we need

to allow multiple connections to the input of an element, using a multiplexor

and control signal to select among the multiple inputs.

 The datapath from R-type and memory instructions, and the datapath for

branches.

 The operations of arithmetic-logical (or R-type) instructions and the memory

instructions data path are quite similar. The key differences are the following:

1. The arithmetic-logical instructions use the ALU with the inputs

coming from the two registers. The memory instructions can also

use the ALU to do the address calculation, although the second

input is the sign-extended 16-bit offset field from the instruction.

2. The value stored into a destination register comes from the ALU

(for an R-type instruction) or the memory (for a load).

Example:1

To build a datapath for the operational portion of the memory reference and arithmetic-

logical instructions that use a single register file and asingle ALU to handle both types

of instructions, adding any necessary multiplexors.

Solution:

 To create a data path with only a single register file and a single ALU, we must

support two different sources for the second ALU input, as well as two

different sources for the data stored into the register file.

Thus, one multiplexer is placed at the ALU input and another at the data input

to the register file.

 The branch instruction uses the main ALU for comparison of the register

operands, so we use adder for computing the branch target address.

 An additional multiplexer is required to select either the sequentially following

instruction address (PC + 4) or the branch target address to be written into the

PC.

 To complete this simple data path, we can add the control unit.

 The control unit must be able to take inputs and generate a write signal for each

state element, the selector control for each multiplexer, and the ALU control.

112

Figure: The datapath for the memory instructions and the R-type instructions.

 The ALU control is different in a number of ways so we must design the ALU

first before we design the rest of the control unit.

Figure:The simple datapath for the MIPS architecture combines the elements

required by different instruction classes.

113

3.3. Control Implementation Scheme

 Control implementation scheme can be build using data path and some simple

control function.

 It covers load word (lw), store word (sw), branch equal (beq), and the

arithmetic-logical instructions add, sub, and, or, and set on less than.

 This implementation scheme covres the overall implementation of our MIPS

subset.

 The MIPS ALU shows the 6 following combinations of four control inputs.

ALU control Lines Function

0000 AND

0001 OR

0010 Add

0110 Sub

0111 Set on less than

1100 NOR

 Depending on the instruction class, the ALU will need to perform one of these

first five functions.

 NOR is needed for other parts of the MIPS instruction set.

For load word and store word instructions the ALU has to compute the

memory address by addition.

 For the R-type instructions, the ALU needs to perform one of the five actions

(AND, OR, subtract, add, or set on less than), depending on the value of the 6-

bit function field in the low-order bits of the instruction.

 For branch equal, the ALU must perform a subtraction. We can generate the 4-

bit ALU control input using a small control unit.

 It has input function field of the instruction and a 2-bit control field it is called

ALUOP.

 ALUOP indicates three kinds of operations

114

1. Add (00) for loads and stores

2. Subtract (01) for branch equal

3. Determined by the operation encoded in the function field (10).

 The output of the ALU control unit is a 4-bit signal that directly controls the

ALU by generating one of the 4-bit combinations shown previously.

 Instruction Opcode field determines the setting of the ALUOp bits. All the

encodings are shown in binary.

 When the ALUOp code is 00 or 01, the desired ALU action does not depend on

the function code field. We do not care about the value of the function code,

and the function field is shown as XXXXXX for 00 or 01 values.

When the ALUOp value is 10, then the function code is used to set the ALU

control input.

 Here we are using multiple levels of decoding and it will provide the following

functions.

 The main control unit generates the ALUOp bits

 ALUOp bits is used as input to the ALU control

 That ALU control generates the actual signals to control the ALU unit

 Using multiple levels of control can reduce the size of the main control unit.

 Using several smaller control units may also potentially increase the speed of

the control unit. Such optimizations are important, since the control unit is

often performance-critical.

115

Mapping 2-bit ALUOp field into 6-bit function field

 There are several different ways to implement the mapping. From the 2-bit

ALUOp field and the 6-bit function field to the four ALU operations control

bits.

 There are 64 possible values are available for function field in that small values

are used more frequently. The function field is used only when the ALUOp bits

equal 10.

 We can use a small piece of logic that recognizes the subset of possible values

and causes the correct setting of the ALU control bits.

 To design a logic first we have to create a truth table for the function code

field and the ALUOp bits.

Truth Table:

 It is a logical representation for operation by listing all the values of the inputs

and showing what the resulting outputs should be.

-care term:

 -care term is an element of a logical function in which the output does not

different ways such as X or d.

Figure: The truth table for ALU control bits

 The above truth table shows how the 3-bit ALU control is set depending on

two input fields. The full truth table is very large (28 = 256 entries) and we

combinations.

116

 Table shows only the truth table entries for which the ALU control must have a

specific value.

 For many instances we do not care about the values of some of the inputs and

-care terms (X).

 Once the truth table has been constructed, it can be optimized and then turned

into gates.

3.3.1 Designing Main Control Unit

 ALU control can be design using two ways one uses the function code and a 2-

bit signal used as a control inputs.

 Now we can design main control unit for that we have to identify the fields of

an instruction and the control lines.

 Control lines are needed for the data path construction. Various instruction

fields are connected together to form a single data path.

 We used three instruction classes and it is important to know the format of it.

Because then only we can obtain data path by connecting different instruction

classes. Instruction formats of R-type, branch load and store instructions

R-type instruction

Load or store instruction

Branch instruction

Opcode:

 The field that denotes the operation and format of an instruction.

117

R-type instruction:

 An R-format instruction has opcode value of 0. These instructions have three

register operands: rs, rt, and rd. Fields rs and rt are sources and rd is the

destination.

 The ALU function is in the funct field and is decoded by the ALU control

design.

 The R-type instructions ill support add, sub, and, or, and slt.

 The shamt field is used only for shifts.

Load or store instruction:

 Load or store instruction has opcode value as 35 or 43.

 The register rs are the base register that is added to the 16-bit address field to

form the memory address.

 For loads, rt is the destination register for the loaded value. For stores, rt is the

source register whose value should be stored into memory.

Branch instruction:

 Branch instruction has opcode value as 4.

 The registers rs and rt are the source registers that are compared for equality.

 The 16-bit address field is sign extended, shifted, and added to the PC to

compute the branch target address.

There are several major observations about this instruction format such as:

1. The opcode field is always contained in bits 31:26. We will refer this

field as Op[5:0].

2. The two registers to be read are always specified by the rs and rt

fields, at positions 25:21 and 20:16. This is true for the R-type

instructions, branch equal, and for store.

3. The base register for load and store instructions is always in bit

positions 25:21 (rs).

4. The 16-bit offset for branch equal, load, and store is always in

positions 15:0.

118

5. The destination register is in one of two places. For a load it is in bit

positions 20:16 (rt), while for an R-type instruction it is in bit positions

15:11 (rd).

 Thus we will need to add a multiplexor to select which field of the instruction

is used to indicate the register number to be written.

 Using this information, we can add the instruction labels and extra multiplexer

to the simple data path.

 The below figure shows these additions plus the ALU control block, the write

signals for state elements, the read signal for the data memory, and the control

signals for the multiplexers.

Figure: The data path with necessary multiplexors and all control lines

 Here all the multiplexers have two inputs; they each require a single control

line.

 The PC does not require a write control, since it is written once at the end of

every clock cycle.

119

 The branch control logic determines whether it is written with the incremented

PC or the branch target address.

 Above figure shows seven single-bit control lines plus the 2-bit ALUOp

control signal.

 We have already defined how the ALUOp control signal works so now we

have to know the function of these seven control lines.

Figure: The effect of seven control signals.

 These nine control signals can be set on the basis of six input signals to the

control unit and it has opcode bits. 31 to 26.

In the figure: The data path with the control unit. The input to the control unit

is the 16-bit opcode field from the instruction.

 The outputs of the control unit consist of three 1-bit signals that are used to

control multiplexers (RegDst, ALUSrc, and MemtoReg) and three signals for

controlling reads and writes in the register file and data memory (RegWrite,

MemRead, and MemWrite).

 1-bit signal used in determining whether to possibly branch (Branch), and a 2-

bit control signal for the ALUOp.

120

 An AND gate is used to combine the branch control signal and the Zero output

from the ALU; the AND gate output controls the selection of the next PC.

Figure: The data path with the control unit and the control signals.

R-type instruction:

 The first row of the table corresponds to the R-format instructions (add, sub,

and, or, and slt).

 For all these instructions, the source register fields are rs and rt, and the

destination register field is rd; this defines how the signals ALUSrc and RegDst

are set. R-type instruction writes a register (RegWrite = 1), but neither reads

nor writes data memory.T

121

 he ALUOp field for R-type instructions is set to 10 to indicate that the ALU

control should be generated from the funct field.

Load or store instruction:

 The second and third rows of this table give the control signal settings for lw

and sw.

 These ALUSrc and ALUOp fields are set to perform the address calculation.

The MemRead and MemWrite are set to perform the memory access. Finally,

RegDst and RegWrite are set for a load to cause the result to be stored into the

rt register.

Branch instruction:

 The branch instruction is similar to an R-format operation, since it sends the rs

and rt registers to the ALU.

 When the Branch control signal is 0, the PC is unconditionally replaced with

PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of

the ALU is also high.

 The ALUOp field for branch is set for a subtract (ALU control = 01), which is

used to test for equality.

 The MemtoReg field is irrelevant when the RegWrite signal is 0.

So, the register is not being written, the value of the data on the register data

write port is not used.

 The MemtoReg in the last two rows of the table is repl

care.

3.3.2 Operation of the Data path

Consider three kinds of instruction classes are

1. R-type instruction

2. Load or store instruction

3. Branch instruction

 It is important to know the flow of control through the data path for these three

different instruction classes.

122

R-type instruction data path:

 Figure shows the operation of the data path for an R-type instruction data path.

 In R-type instruction consider add $t1,$t2,$t3 and remaining four operations

occurs in one clock cycle.

Figure: The data path in operation for an R-type instruction

 There are four steps used to execute this instruction and these steps are ordered

by the flow of information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file, and the

main control unit computes the setting of the control lines during

this step.

3. The ALU operates on the data read from the register file using the

function code to generate the ALU function.

4. The result from the ALU is written into the register file using bits

15:11 of the instruction to select the destination register ($t1).

123

Load instruction data path:

Figure: The data path in operation for a load instruction.

 There are five steps involved in execution of load instruction.

1. An instruction is fetched from the instruction memory, and the PC is

incremented.

2. A register ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file

and the sign extended lower 16 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the

register destination is given by bits 20:16 of the instruction ($t1) .

Branch instruction data path:

 Branch-on-equal instruction has the following steps to execute a branch

instruction such as

beq $t1,$t2,offset.

 It operates much like an R-format instruction, but the ALU output is used to

determine whether the PC is written with PC + 4 or the branch target address.

124

Figure: The data path in operation for a branch equal instruction.

 There are four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC

is incremented.

2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs a subtract on the data values read from the

register file. The value of PC + 4 is added to the sign-extended,

lower 16 bits of the instruction (offset) shifted left by two; the

result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result

to store into the PC.

3.3.3 Single-cycle implementation

 It is also called single clock cycle implementation. It is an implementation in

which an instruction is executed in one clock cycle.

125

 For example, consider jump instruction to show how the data path and control

can be extended to handle other instruction in the instruction set.

Figure: Instruction format for the jump instruction

 The jump instruction looks somewhat like a branch instruction but computes

the target PC differently and is not conditional.

Figure: The simple control and data path are extended to handle the jump

instruction.

 As like branch, the low order 2 bits of a jump address are always 00two. The

next lower 26 bits of this 32-bit address come from the 26-bit immediate field

in the instruction.

 The upper 4 bits of the address that should replace the PC come from the PC of

the jump instruction plus 4. Thus, we can implement a jump by storing into the

PC the concatenation of

 The upper 4 bits of the current PC + 4

126

 The 26-bit immediate field of the jump instruction

 The bits 00two

 An additional multiplexer is used to choose between the jump target and either

the branch target or the sequential instruction following this one.

 This multiplexer is controlled by the jump control signal.

 The jump target address is obtained by shifting the lower 26 bits of the jump

instruction left 2 bits, adding 00 as the low-order bits, and then concatenating

the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit address.

 One additional control signal is needed for the additional multiplexor. This

control signal is called Jump. It is when the opcode is 2.

Why a Single-Cycle Implementation Is Not Used Today

 The single-cycle design is not used in modern designs because

1. It is inefficient

2. The clock cycle must have the same length for every instruction

3. Overall performance is very poor because it has long clock cycle.

A Multi-cycle Implementation:

It is also called multiple clock cycle implementations. It is an implementation

in which an instruction is executed in multiple clock cycles.

Figure: The high level view of the multi-cycle data path.

 In a multi-cycle implementation, each step in the execution will take 1 clock

cycle.

127

 The multi-cycle implementation allows a functional unit to be used more than

once per instruction, as long as it is used on different clock cycles.

 This sharing can help to reduce the amount of hardware required.

Advantages:

1. It allows the instructions to take different numbers of clock cycles.

2. It share functional units within the execution of a single

instruction.

The major difference between the data path for the single -cycle over multi cycle are:

1. A single memory unit is used for both instructions and data.

2. There is a single ALU, rather than an ALU and two adders.

3. One or more registers are added after every major functional unit to

hold the output of that unit until the value is used in a subsequent

clock cycle.

3.4 Pipelining

 Pipelining is an implementation technique in which multiple instructions are

overlapped in execution.

 Pipelining is the most technique used to increase the speed and performance of

the processor.

 Anyone who has done a lot of laundry has intuitively used pipelining.

Non- pipelined approach to laundry:

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

128

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

Pipelined approach to laundry:

1. Place dirty load of clothes in the washer.

2. As soon as the washer is finished with the first load and placed in the

dryer.

3. Load the washer with the second dirty load.

4. When the first load is dry then moves the wet load to the dryer and the

next dirty load into the washer.

5. Next your roommate put the first load away, you start folding the

second load, the dryer has the third load, and you put the fourth load

into the washer.

 Ann, Brian, Cathy, and Don each have dirty clothes to be washed, dried,

minutes for their task.

 Sequential laundry takes 8 hours for four loads of wash, while pipelined

laundry takes just 3.5 hours.To, pipelined laundry is potentially four times

faster than non pipelined laundry process.

Figure 1 The laundry analogy for pipelining

Pipelining in processor:

To execute a MIPS instruction through the pipeline it takes five steps:

1. Fetch instruction from memory.

129

2. Read registers while decoding the instruction. The format of MIPS

instructions allows reading and decoding to occur simultaneously

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

3.4.1 Single-Cycle versus Pipelined Performance

Consider three kinds of different instructions classes are

1. Load and store word instruction.

2. R-type instruction.

3. Branch instruction.

 From these three instruction classes we have eight instructions such as load

word (lw), store word (sw), add (add), subtract (sub), and (and), or (or),set-

less-than (slt), and ranch-on-equal (beq).

 For these eight instructions we have to find the average time taken to execute

the instructions in both single clock cycle through pipelined implementation.

The operation times for the major functional units are:

 200 ps for memory access,

200 ps for ALU operation, and

 100 ps for register file read or write.

In single clock cycle model every instruction takes exactly 1 clock cycle, so it

will produce the slow speed to execute the instruction.

 Figure compares non pipelined and pipelined execution of three load word

instructions.

 The time between the first and fourth instructions in the non pipelined design is

3 x 800 ns or 2400 ps.

 The time between the first and fourth instructions in the pipelined design is 3 x

200 ns or 600 ps.

 All the pipeline stages take a single clock cycle, so the clock cycle must belong

enough to accommodate the slowest operation.

130

 The single cycle design must take the worst case clock cycle of 800 ps even

though some instructions can be as fast as 500 ps.

 The pipelined execution clock cycle must have the worst case clock cycle of

200 ps even though some stages take only 100 ps.

Figure: Single cycle pipelined execution.

 If the stages are perfectly balanced, then the time between instructions on the

pipelined processor assuming ideal conditions is equal to

stages pipe ofNumber

 nsinstructiobetween Time
 nsinstructiobetween Time pipelined-non

pipelined

131

 Under ideal conditions and with a large number of instructions, the speedup

from pipelining is approximately equal to the number of pipe stages; a five-

stage pipeline is nearly five times faster.

 The formula suggests that a five-stage pipeline should offer nearly a fivefold

improvement over the 800 ps non pipelined time, or a 160 ps clock cycle. The

example shows that the stages may be imperfectly balanced.

3.4.2 Designing Instruction Sets for Pipelining

 For designing instruction set for pipelining process we have to consider some

important factor such as

1. Length of the instruction

2. Instruction format

3. Memory operands

4. Operand Alignment

 To explain the pipelining process we take the MIPS instruction set, so using

these four factors we can design for pipelined execution.

Length of the instruction:

 All MIPS instructions are the same length. It makes much easy to fetch

instructions in the first pipeline stage and to decode them in the second stage.

Many instruction set has different length. An instruction set like the IA-32,

instructions vary from 1 byte to 17 bytes, pipelining is considerably more

challenging.

 To perform pipelining in IA-32 instructions we need to perform following task:

 IA-32 architecture translates IA-32 instructions into simple micro operations

like MIPS instructions. Then the pipeline has micro operations rather than the

native IA-32 instructions.

Instruction format:

 MIPS have only a few instruction formats. The source register fields being

located in the same place in each instruction.

132

 If instruction format is symmetric then the second stage can begin reading the

register file at the same time that the hardware is determining what type of

instruction was fetched.

 If instruction formats were not symmetric then we have to split second stage

into two parts. It will increase the stages of pipelining process.

Memory operands:

 MIPS instruction set has only two memory operands (loads or stores). It can

use the execute stage to calculate the memory address and then access memory

in the following stage.

 In IA-32 instruction set, a stage 3 and 4 has expanded to an address stage,

memory stage, and then execute stage.

Operand Alignment:

 Fourth, operands must be aligned in memory, Hence, we need not worry about

a single data transfer instruction requiring two data memory accesses; the

requested data can be transferred between processor and memory in a single

pipeline stage.

3.4.3 Pipeline Hazards

 There are situations in pipelining when the next instruction cannot execute in

the following clock cycle. These events are called hazards. There are three

types of hazards:

1. Structural hazards

2. Data hazards

3. Control hazards

Structural hazards:

 The first hazard is called a structural hazard. It means that the hardware

cannot support the combination of instructions that we want to execute in the

same clock cycle.

 A structural hazard in the laundry room would occur if we used a washer-dryer

combination instead of a separate washer and dryer.

 If our roommate are doing something else and without put clothes away.

133

 In the same clock cycle the first instruction is accessing data from memory and

the fourth instruction is fetching an instruction from that same memory. So it

cause structural hazard.

 The load instruction effectively steals an instruction-fetch cycle, causing the

pipeline to stall, no instruction is initiated on clock cycle 4 (which normally

would initiate instruction i + 3).

 Because the instruction being fetched is stalled, all other instructions in the

pipeline before the stalled instruction can proceed normally.

 The stall cycle will continue to pass through the pipeline, so that no instruction

completes on clock cycle 8.

 Sometimes these pipeline diagrams are drawn with the stall occupying an

entire horizontal row and instruction 3 being moved to the next row; in either

case, the effect is the same, since instruction i + 3 does not begin execution

until cycle 5.

Data Hazard:

 Data hazard occurred when a planned instruction cannot execute in the proper

clock cycle because data that is needed to execute the instruction is not yet

available.

 In pipeline process if one step must wait for another to complete means it cause

data hazards.

 For example, an add instruction followed immediately by a subtract instruction

that uses the sum ($s0):

134

add $s0, $t0, $t1

sub $t2, $s0, $t3

 Subtract instruction has to wait until the add instruction is executed. Because it

has to get $s0 value from the add instruction itself.

 Without intervention, a data hazard could severely stall the pipeline. The add

instruction does not write its result until the fifth stage, meaning that we would

have to add three bubbles to the pipeline.

 In fifth clock cycle, only add write the result but subtract has to read the value

in second clock cycle itself.

Solution for Data Hazard:

the instruction to complete before trying to resolve the data hazard.

 For the code above as soon as the ALU creates the sum for the add instruction

we can supply it as an input for the subtract.

 Adding extra hardware to retrieve the missing item early from the internal

resources is called forwarding or bypassing.

Forwarding:

Also called bypassing. A method of resolving a data hazard by retrieving the

missing data element from internal buffers rather than waiting for it to arrive

from programmer-visible registers or memory.

Figure: Graphical Representation of Forwarding.

135

 MIPS instruction set has five stages for pipelining process:

IF - instruction fetch stage

ID - instruction decode/register file read stage,

EX - execution stage

MEM - memory access stage,

WB -the write back stage

 The connection shows the forwarding path from the output of the EX stage of

add to the input of the EX stage for sub, replacing the value from register $s0

read in the second stage of sub.

 Forwarding paths are valid only if the destination stage is later in time than the

source stage.

Load-use data hazard:

 A specific form of data hazard in which the data requested by a load instruction

has not yet become available when it is requested.

Pipeline stall:

 It is also called bubble. A stall initiated in order to resolve a hazard.

Figure needs a stall even with forwarding when a load tries to use the data.

 Without the stall, the path from memory access stage output to execution stage

input would be going backwards in time, which is impossible.

136

 This figure is actually a simplification, since we cannot know until after the

subtract instruction is fetched and decoded whether or not a stall will be

necessary.

Reordering Code to Avoid Pipeline Stalls

Example:1

Consider the following code segment in C:

A = B + E;

C = B + F;

Here is the generated MIPS code for this segment, assuming all variables are in

memory and are addressable as offsets from $t0:

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

Find the hazards in the following code segment and reorder the instructions to avoid

any pipeline stalls.

Solution:

 Both add instructions have a hazard because of their respective dependence on

the immediately preceding lw instruction.

 By passing eliminates several other hazards including the dependence of the

first add on the first lw and any hazards for store instructions. Moving up the

third lw instruction eliminates both hazards.

lw $t1, 0($t0)

lw $t2, 4($t1)

lw $t4, 8($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

137

add $t5, $t1,$t4

sw $t5, 16($t0)

 On a pipelined processor with forwarding, the reordered sequence will

complete in two fewer cycles than the original version.

Control Hazards: (branch hazards)

 The third type of hazard is called a control hazard, arising from the need to

make a decision based on the results of one instruction while others are

executing. Also called branch hazard.

 When the instruction cannot execute in the proper clock cycle because the

instruction that was fetched is not the one that is needed.

 That is the flow of instruction addresses is not what the pipeline expected.

Consider the branch instruction; we must begin with fetching the instruction

following the branch on the very clock cycle.

Figure showing stalling on every conditional branch as solution to control hazards.

 The pipeline cannot possibly know what the next instruction should be,

because it only received the branch instruction from memory.

 To avoid stall, we fetch a branch after that waiting until the pipeline determines

the outcome of the branch and knows what instruction address to fetch from.

calculate the branch address and update the PC during the second stage of the

pipeline.

 Even with this extra hardware, the pipeline involving conditional branches like

Figure 6.

138

 The lw instruction, executed if the branch fails, is stalled one extra 200-ps

clock cycle before starting.

 If we cannot resolve the branch in the second stage, as is often the case for

longer pipelines and the cost of is too high for most computers. To resolve the

control hazard we are using branch prediction.

Figure shows the pipeline when the branch is not taken.

Figure shows the pipeline when the branch is taken.

Branch prediction:

 A method of resolving a branch hazard that assumes a given outcome for the

branch and proceeds from that assumption rather than waiting to ascertain the

actual outcome.

Dynamic hardware predictors:

 Dynamic hardware predictors make their guesses depending on the behavior of

each branch and may change predictions for a branch over the life of a

program.

 In dynamic prediction a person should look at how dirty the uniform was and

guess at the formula, adjusting the next guess depending on the success of

recent guesses.

139

 One popular approach to dynamic prediction of branches is keeping a history

for each branch as taken or untaken. This using the recent past behavior to

predict the future.

Advantages of pipeline:

 Pipelining increases the number of simultaneously executing instructions and

the rate at which instructions are started and completed.

 Pipelining improves instruction throughput rather than individual instruction

execution time or latency.

Latency (pipeline):

 The number of stages in a pipeline or the number of stages between two

instructions during execution.

3. 5 Pipelined Data path And Control

 Pipelining has five stages.

1. IF: Instruction fetch.

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

 Instructions and data move generally from left to right through the five stages

as they complete execution. There are two exceptions to this left-to-right flow

of instructions:

1. The write-back stage, which places the result back into the register file

in the middle of the data path

2. The selection of the next value of the PC, choosing between the

incremented PC and the branch address from the MEM stage

 These two process stage will perform data flowing from right to left.

 Data flowing from right to left does not affect the current instruction; only later

instructions in the pipeline are influenced by these reverse data movements.

 Note that the first right-to-left arrow can lead to data hazards and the second

leads to control hazards.

140

Figure: The single-cycle data path

Figure: Instructions being executed using the single-cycle data path

 Consider three load word instructions and how data path are created during

pipelining process. Three load word instructions are

 lw $1, 100($0)

 lw $2, 200($0)

141

lw $3, 300($0)

 IM represents the instruction memory and the PC in the instruction fetch stage.

Reg stands for the register file and sign extender in the instruction

decode/register file read stage (ID).

 To maintain proper time order, this data path breaks the register file into two

logical parts:

1. Registers read during register fetch (ID).

2. Registers written during write back (WB).

 The register file is written in the half of the clock cycle and the register file is

read during the second half.

Pipelined Data path:

 Pipelined data path can be implemented using the pipeline registers. All

instructions advance during each clock cycle from one pipeline register to the

next.

 The registers are named for the two stages separated by that register. For

example, the pipeline register between the IF and ID stages is called IF/ID.

Figure: Pipelined version of the data path

142

 There is no pipeline register at the end of the write-back stage. All instructions

must update some state in the processor. The register file, memory, or the PC

has a separate pipeline register is redundant to the state that is updated.

 Every instruction updates the PC whether by incrementing it or by setting it to

a branch destination address.

 The PC is part of the visible architectural state and its contents must be saved

when an exception occurs, while the contents of the pipeline registers can be

discarded.

Load word and Store word Instruction:

 The data path of load word and store word instruction is created by executing

five stages of pipelined execution. Load word is active in all five stages.

 The right half of registers or memory is used for read and the left half used for

written. Both load and store has five stages. The five stages are the following:

1. Instruction fetch:

Load word:

 The instruction is being read from memory using the address in the PC and

then placed in the IF/ID pipeline register.

The PC address is incremented by 4 and then written back into the PC to be

ready for the next clock cycle. This incremented address is also saved in the

IF/ID pipeline register in case it is needed later for an instruction, such as beq.

 The computer cannot know which type of instruction is being fetched. So it

must prepare for any instruction, passing potentially needed information down

the pipeline.

Store word:

 The instruction is read from memory using the address in the PC and then is

placed in the IF/ID pipeline register. This stage occurs before the instruction is

identified

143

Figure: Instruction fetch for load word and store word

2. Instruction decode and register file read:

Load word:

 The instruction portion of the IF/ID pipeline register supplying the 16-bit

immediate field, which is sign-extended to 32 bits, and the register numbers to

read the two registers.

 All three values are stored in the ID/EX pipeline register, along with the

incremented PC address. A

 Again we need to transfer everything that might be needed by any instruction

during a later clock cycle.

Store word:

 The instruction in the IF/ID pipeline register supplies the register numbers for

reading two registers and extends the sign of the 16-bit immediate.

 These three 32-bit values are all stored in the ID/EX pipeline register.

144

Figure: Instruction decode for load word and store word

3. Execute or address calculation:

Figure: Third pipeline stage of load instruction

145

Load word:

 The load instruction reads the contents of register 1 and the sign-extended

immediate from the ID/EX pipeline register and adds them using the ALU.

That sum is placed in the EX/MEM pipeline register.

Store word:

 The effective address is placed in the EX/MEM pipeline register.

Figure: Third pipeline stage of store instruction

4. Memory access:

Load word:

 The load instruction reading the data memory using the address from the

EX/MEM pipeline register and loading the data into the MEM/WB pipeline

register.

Store word:

 The Figure shows the data being written to memory. The register containing

the data to be stored was read in an earlier stage and stored in ID/EX.

 The only way to make the data available during the MEM stage is to place the

data into the EX/MEM pipeline register in the EX stage. The effective address

is stored into EX/MEM.

146

Figure: Fourth pipeline stage of load instruction

Figure: Fourth pipeline stage of store instruction

5. Write back:

 Reading the data from the MEM/WB pipeline register and writing it into the

register file

147

Store word:

 For this instruction nothing happens in the write-back stage. Because every

instruction behind the store is already in progress, we cannot accelerate those

instructions.

 Each logical component of the data path in load and store instruction are

memory, register read ports, ALU, data memory, and register write port .

 It can be used only within a single pipeline stage. Otherwise it causes structural

hazard.

Figure: Fifth pipeline stage of load instruction

Figure: Fifth pipeline stage of store instruction

148

 Load instruction must preserve the destination register number. Load must pass

the register number from the ID/EX through EX/MEM to the MEM/WB

pipeline register for use in the WB stage.

 Figure shows the correct version of the data path. Passing the write register

number first to the ID/EX register, then to the EX/MEM register, and finally to

the MEM/WB register. The register number is used during the WB stage to

specify the register to be written.

Figure: The corrected pipeline data path to handle the load instruction.

3. 5.1 Graphically Representation of Pipeline

 Pipelining can be difficult to understand because many instructions are

executed simultaneously in a single data path in every clock cycle. There are

two types of graphically representation for pipeline such as

1. Multiple-clock-cycle pipeline diagrams

2. Single-clock-cycle pipeline diagrams

Multiple-clock-cycle pipeline diagrams:

 The multiple-clock-cycle diagrams are simpler but do not contain all the

details. For example, consider the following five instruction sequence:

lw $10, 20($1)

sub $11, $2, $3

149

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

 Instructions are executed from top to bottom and clock cycles move from left

to right.

Figure: Multiple-clock-cycle pipeline diagram of five instructions.

Figure: Multiple-clock-cycle pipeline diagram of five instructions

150

Single-clock-cycle pipeline diagram:

 It shows the state of the entire data path a single clock cycle. It can be used to

know the details of what is happening within the pipeline during each clock

cycle.

 A single-clock-cycle diagram represents a vertical slice through a set of

multiple-clock-cycle diagram. It shows the usage of the data path by each of

the instructions in the pipeline at the designated clock cycle.

Figure: The single-clock-cycle diagram.

3.6 Handling Data Hazards

 Data hazards occur when the pipeline must be stalled because one step must

instruction.

sub $2, $1,$3 # Register $2 written by sub

and $12,$2,$5 # 1st operand($2) depends on sub

or $13,$6,$2 # 2nd operand($2) depends on sub

add $14,$2,$2 # 1st($2) & 2nd($2) depend on sub

sw $15,100($2) # Base ($2) depends on sub

151

 Register $2 is used in all the five instruction so last four instruction has to wait

until the first instruction was executed.

 The last four instructions are all dependent on the result in register $2 of the

first instruction.

 If register $2 had the value 10 before the subtract instruction and 20

afterwards after subtract instruction. So last four instructions must use $2 value

as -20 for their execution.

Multiple-clock-cycle pipeline representation:

Figure: Pipelined dependences in a five-instruction sequence

 Above instructions are executed in pipeline using multiple clock cycle

representation.

 Value of $2 changes in clock cycle 5 because at that point only the sub

instruction will write the value of its result.

Register File:

 First instruction (sub) will return the value of $2 and remaining instructions

will read the value from $2.

152

 The proper value of $2 will be available at the end of fifth clock cycle so

remaining instruction must wait until fifth clock cycle it cause the data hazard.

 Data Hazard can be resolved using the design of the register file hardware.

 If register is read and written in the same clock cycle means, write is in first

half of the clock cycle and read is in the second half of the clock cycle.

 So in such cases the read delivers what is written. Implementing these kinds of

register file does not have data hazard.

Forwarding:

 Forwarding is a method used to avoid data hazards in pipeline process.

 Normally the desired result is available at the end of the EX stage or clock

cycle 3.

 To perform And and OR instruction we need the result value at the beginning

of the EX stage.

 We can execute this segment without stalls if forwarding the data as soon as it

is available to any units that need it before it is available to read from the

register file.

How does forwarding work?

 Assume forwarding is applied only in the EX stage it will either perform an

ALU operation or an effective address calculation.

 If EX stage wants to use a register value means it must write in the WB stage

itself.

 In forwarding technique we have to use notation to know the fields of the

pipeline registers.

 For example,

 The above notation refers to the number of one register whose value is found in

the pipeline register ID/EX; that is, the one from the first read port of the

register file.

 The first part of the name (ID) indicates the name of the pipeline register.

 The second part is the name (EX) indicates the name of the field in that

register.

 Using this notation, the two pairs of hazard conditions are occurred.

153

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

 The first hazard will occur in register $2 between the result of sub $2,$1,$3

and the first read operand of and $12,$2,$5.

This hazard can be detected when AND instruction is in the EX stage and the

prior instruction is in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

 This policy is inaccurate for all conditions because some instructions do not

write registers.

 Examining the WB control field of the pipeline register during the EX and

MEM stages determines if RegWrite is asserted.

 Once if we detect the hazards half of the problem is resolved but we must still

forward the proper data.

154

 The dependence begins from a pipeline register rather than waiting for the WB

stage to write the register file. Pipeline register hold the required data to be

forwarded for later instructions.

 If we can take the inputs to the ALU from any pipeline register rather than just

ID/EX, then we can forward the proper data.

 By adding multiplexors to the input of the ALU and with the proper controls,

we can run the pipeline at full speed in the presence of these data dependences.

Figure: No forwarding on ALU and pipeline registers

Figure: With forwarding on ALU and pipeline registers

155

 This forwarding control will be in the EX stage because the ALU forwarding

multiplexors are found in that stage.

 Thus, we must pass the operand register numbers from the ID stage via the

ID/EX pipeline register to determine whether to forward values.

 We already have the rt field (bits 20 16). Before forwarding, the ID/EX

register had no need to include space to hold the rs field. Hence, rs (bits 25 21)

is added to ID/EX.

 Conditions for detecting hazards and the control signals to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd _ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd _ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

2. MEM hazard:

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd _ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd _ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

156

3.6.1 Data Hazards and Stalls

 So in addition to a forwarding unit, we need a hazard detection unit.

 It operates during the ID stage so that it can insert the stall between the load

and its use.

 Checking for load instructions, the control for the hazard detection unit is this

single condition:

if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline

 The first line tests to see if the instruction is a load or not.

 The load instruction that reads data memory.

 The next two lines check to see if the destination register field of the load in the

EX stage matches either source register of the instruction in the ID stage.

 If the condition holds, the instruction stalls 1 clock cycle.

 After this 1-cycle stall, the forwarding logic can handle the dependence and

execution proceeds.

 If the instruction in the ID stage is stalled, then the instruction in the IF stage

must also be stalled.

 If IF stage not stalled we would lose the fetched instruction.

 To avoid stalled in these two stage we can prevent the PC register and the

IF/ID pipeline register from changing.

The instruction in the IF stage will continue to be read using the same PC.

 The registers in the ID stage will continue to be read using the same instruction

fields in the IF/ID pipeline register.

NOP (No operation):

 An instruction that does no operation to change state.

 NOP is acase where pipeline stage executing an instruction but that does not

make any changes in the state.

 NOP act like a bubble in the pipeline stage.

157

Inserting NOPs in pipeline:

 NOPs are like bubbles, to identify hazard in ID stage we had to insert bubble

into the pipeline.

 Once the bubble is inserted in the ID stage it will change the control field of

EX, MEM, and WB field of the ID/EX pipeline register to 0.

 If the control values are 0 then no registers or memories are written.

 If AND instruction is NOP then all instruction beginning with the AND

instruction are delayed one cycle.

 A bubble is inserted beginning in clock cycle 4, by changing the and

instruction to a nop.

 AND instruction is really fetched and decoded in clock cycles 2 and 3 but its

EX stage is delayed until clock cycle 5.

 OR instruction is fetched in clock cycle 3, but its IF stage is delayed until clock

cycle 5.

 After insertion of the bubble, all the dependences go forward in time and no

further hazards occur.

Figure: The way stalls are really inserted into the pipeline.

158

Figure: Pipelined connection for both the hazard detection unit and the

forwarding unit

Hazard detection unit:

 The hazard detection unit controls the writing of the PC and IF/ID registers.

 It also controls the multiplexer that chooses between the real control values and

all 0s.

Forwarding unit:

 Forwarding unit controls the ALU multiplexors to replace the value from a

general-purpose register with the value from the proper pipeline register.

 Using these two units we can resolve the data hazard occurred in the pipelining

process.

3.7 Control Hazards

 Control hazard occurs when we execute the branch instruction in pipeline

process. Control hazard are relatively simple to understand and if occurs at less

frequently.

 To avoid Control hazard in pipeline process we can use simple method and no

need to go for any special techniques like data hazard.

159

 Figure shows a sequence of instructions and indicates when the branch would

occur in this pipeline. An instruction must be fetched at every clock cycle to

sustain the pipeline, yet in our design the decision about whether to branch

 The numbers to the left of the instruction (40, 44 . . .) are the addresses of the

instructions. Since the branch instruction decides whether to branch in the

MEM stage, clock cycle 4 for the beq instruction above.

 The three sequential instructions that follow the branch will be fetched and

begin execution before beq branches to lw at location 72.

 To resolve the Control hazard we have to know whether branch not taken or

not. There are two schemes used to resolve the Control hazard such as

1. Branch Not Taken

2. Branch Prediction

Figure: Pipeline on the branch instruction

3.7.1 Branch Not Taken

 If the branch is taken, the instructions that are being fetched and decoded must

be discarded. Execution continues at the branch target.

160

 Discarding instructions means we must be able to flush instructions in the IF,

ID, and EX stages of the pipeline.

 Flush is a method used to discard instructions in a pipeline usually due to an

unexpected event.

 If branch instruction is fetched immediately it stall execution until the pipeline

determine the outcome of the branch and knows which instruction address is to

fetch.

 If branches are not taken means no need to discard any instruction and

pipelining will execute the instruction continuously.

 Branches are taken then only pipeline has stalled so by reducing the delay of

branches we can improve the performance of pipelining process in this

condition.

3.7.2 Reducing the Delay of Branches

 One way to improve branch performance is to reduce the cost of the taken

branch.

 The next PC for a branch is selected in the MEM stage, but if we move the

branch execution earlier in the pipeline, then fewer instructions need be

flushed.

Executing branch instruction earlier in the pipeline will increase the speed of

performance.

 The MIPS architecture was designed to support fast single cycle branches that

could be pipelined with a small branch penalty.

 The designers observed that many branches had only simple test for that it does

not require a full ALU operation .

 For more complex branch decision we need to use an ALU to perform a

required comparison.

 Moving the branch decision up requires two actions to occur earlier:

 Computing the branch target address

 Evaluating the branch decision.

161

Computing the branch target address:

 The branch address calculation will be performed for all instruction but used

only when it needed. To calculate branch target address we need Pc value and

IF/ID field value.

 Already we have the PC value and the immediate field in the IF/ID pipeline

register, so we just move the branch adder from the EX stage to the ID stage

that will give new branch target address.

Evaluating the branch decision:

 Branch decision is a complex task and evaluating branch decision is not an

easy task.Branch decisions are

 Branch equal

 Branch not equal

 For example, consider branch equal decision itself. We have to compare the

two registers read during the ID stage to see if they are equal.

 Equality can be tested by first exclusive ORing their respective bits and then

ORing all the results. Moving the branch test to the ID stage implies additional

forwarding and hazard detection hardware.

 To implement branch-on-equal we will forward results to the equality test logic

that operates during ID.

Two complicating factors:

 1. During ID, we must decode the instruction to decide whether a bypass to the

equality unit is needed, and complete the equality comparison.

 If the instruction is a branch we can set the PC to the branch target address.

Forwarding for the operands of branches handled by the ALU forwarding logic

unit.

 But introduction of the equality test unit in ID will require new forwarding

logic.

 The bypassed source operands of a branch can come from either the

ALU/MEM or MEM/WB pipeline latches.

162

 2. The values in a branch comparison are needed during ID but may be

produced later in time, it is possible that a data hazard can occur and a stall will

be needed.

Figure: The ID stage of clock cycle 3 determines that a branch must be taken.

 For example, if an ALU instruction immediately preceding a branch produces

one of the operands for the comparison in the branch, a stall will be required,

163

since the EX stage for the ALU instruction will occur after the ID cycle of the

branch.

 To overcome these difficulties, moving the branch execution to the ID stage it

reduces the penalty of a branch to only one instruction if the branch is taken.

Branch Prediction:

 Branch prediction is a method of resolving a branch hazard. It assumes the

outcomes of branch and proceeds for that assumption rather than waiting to

determine the actual outcome.

 A simple form of branch prediction is we have to assume branch is not taken.

This assumption is possible only for 5 stage pipeline.

 For deeper pipelines this assumption is not suitable because it will increase the

branch penalty when measured in clock cycles. For such kind of pipelines we

have to add more hardware to predict branch behavior during program

execution.

 Solution for increasing branch penalty we have new technique called dynamic

branch prediction.

3.7.3 Dynamic Branch Prediction

 Dynamic branch prediction is a prediction of branches at runtime using runtime

information.

 To implement dynamic branch prediction method we have to use one buffer

that is called branch prediction buffer or branch history table.

 A branch prediction buffer is a small memory indexed by the lower portion of

the address of the branch instruction.

 The memory contains a bit that says whether the branch was recently taken or

not. Prediction is just a hint that is assumed to be correct, so fetching begins in

the predicted direction.

 If the hint is wrong then the incorrectly predicted instructions are deleted.

 The prediction bit is inverted and stored back, and the proper sequence is

fetched and executed.

164

Loops and Prediction:

Example:1

Consider a loop branch that branches nine times in a row, then is not taken once. What

is the prediction accuracy for this branch, assuming the prediction bit for this

branch remains in the prediction buffer?

Solution:

 The steady-state prediction behavior will mispredict on the first and last loop

iterations.

 Mispredicting the last iteration is inevitable since the prediction bit will say

taken: the branch has been taken nine times in a row at that point.

 The misprediction on the first iteration happens because the bit is flipped on

prior execution of the last iteration of the loop, since the branch was not taken

on that exiting iteration.

 Thus, the prediction accuracy for this branch that is taken 90% of the time is

only 80%

Drawback:

 The accuracy of the predictor would match the taken branch frequency for

these highly regular branches.

Two-bit prediction scheme:

To overcome the drawback of branch prediction buffer method, new method

called Two-bit prediction schemes is used.

 In a 2-bit scheme, a prediction must be wrong twice before it is changed.

 A branch prediction buffer can be implemented as a small, special buffer

accessed with the instruction address during the IF pipe stage.

 If the instruction is predicted as taken then fetching begins from the target as

soon as the PC is known.\ Otherwise, sequential fetching and executing

continue.

165

Figure: The states in a 2-bit prediction scheme

3.8 Exceptions

 Control is the most challenging aspect of processor design because of two

reasons:

1. It is the hardest part to get right

2. It is the hardest part to make fast.

 One of the hardest parts of control is implementing exceptions and interrupts.

 Handling exceptions and interrupts are more complex task than handling

branches or jumps.

 That changes the normal flow of instruction execution.

 An exception and interrupts are initially created to handle unexpected event

from within the processor; arithmetic overflow is an example of an exception.

Exception:

 Also called interrupt. An unscheduled event that disrupts program execution;

used to detect overflow.

Interrupt:

 An exception that comes from outside of the processor.

 An interrupt is an event that also causes an unexpected change in control flow

but comes from outside of the processor.

166

 Interrupt refer to any unexpected change occurred only when the event is

externally caused.

 The above examples show whether the situation is generated internally by the

processor or externally generated. To detect two types of exceptions we need to

implement control.

 Two types of exceptions arise

1. From the portions of the instruction set

2. Implementation

 Detecting exceptional conditions and taking the appropriate action is on the

critical timing path of a processor. Processor must determines the clock cycle

time and thus performance.

 To design a control unit we must have proper attention to exceptions.

 Because exception can reduce performance and it leads complex task ot get

the correct design.

3.8.1 Exceptions in MIPS Architecture

 In MIPS Architecture two types of exceptions occur at

1. Execution of an undefined instruction

2. An arithmetic overflow

 Once exception occur then the processor must save the address of the offending

instruction in the exception program counter (EPC) and then transfer control to

the operating system at some specified address.

 After transferring control to the operating system can take the appropriate

action to provide some service to the user program.

 Operating system will provide the following services to user program.

167

1. Taking some predefined action in response to an overflow

2. Stopping the execution of the program and reporting an error.

 After performing whatever action is required because of the exception, the

operating system can terminate the program or may continue its instruction

execution.

 Operating system uses the EPC to determine where to restart the execution of

the program.

 To handle the exception by operating system it must know the reason for the

exception.

 MIPS architecture has two methods to find the reason for the exception

1. Status register

2. Vectored interrupts

Status registers:

 It is also called the cause register. It holds a field that indicates the reason for

the exception.

Vectored interrupts:

 An interrupt for which the address to which control is transferred is determined

by the cause of the exception.

The operating system knows the reason for the exception by the address at

which it is initiated.

 The addresses are separated by 32 bytes or 8 instructions.

 The operating system must record the reason for the exception and may

perform some limited processing in this sequence.

 When the exception is not vectored, a single entry point for all exceptions can

be used.

168

 If single entry point is used for all exceptions then the operating system

decodes the status register to find the reason for exception.

 To handle exception we can add a few extra registers and control signals to

their basic implementation.

3.8.2 Implementation of exception in MIPS architecture

 To implement exception system in MIPS architecture assume it has single

entry point for all exception and has address value is 8000 0180.

 This address value indicates it is an arithmetic overflow exception.

 To handle this exception we need to add two additional registers to our current

MIPS implementation.Two additional registers are EPC and cause register.

EPC:

 A 32-bit register used to hold the address of the affected instruction.This

register is needed even when exceptions are vectored.

Cause:

 A register used to record the cause of the exception.

 In the MIPS architecture, this register is 32 bits, although some bits are

currently unused.

 Assume that the low-order bit of this register encodes the two possible

exception: undefined instruction = 0 and arithmetic overflow = 1.

Exception in pipelined Implementation:

 In a pipelined implementation exceptions are treated as another form of control

hazard.

 In MIPS exception address we add an additional input to the PC multiplexer

that sends 8000 0180hex to the PC.

 Cause register record the cause of the exception

 The 8000 0180hex input to the multiplexor is the initial address to begin

fetching instructions in the event of an exception.

169

 If we do not stop execution in the middle of the instruction then following

things will happen.

 The programmer will not be able to see the original value of register $1.

 Register $1 is used to cause the overflow because it will be tackle the

destination register of the add instruction.

 Because of careful planning, the overflow exception is detected during the EX

stage. So we can use the EX. Flush signal to prevent the instruction in the EX

stage from writing its result in the WB stage.

 The final step is to save the address of the offending instruction in the

Exception Program Counter (EPC), save the address + 4, so the exception

handling routine must first subtract 4 from the saved value.

 Multiple exceptions can occur simultaneously in a single clock cycle.

Figure: The data path with controls to handle exceptions

 The normal solution is to prioritize the exceptions so that it is easy to determine

which is serviced first.

 The EPC captures the address of the interrupted instructions, and the MIPS

Cause register records all possible exceptions in a clock cycle, so the exception

software must match the exception to the instruction.

170

 An important clue knows in which pipeline stage a type of exception can occur.

For example, an undefined instruction is discovered in the ID stage, and

invoking the operating system occurs in the EX stage.

