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1. Static Electric Field

UNIT I
STATIC ELECTRIC FIELD

Vector Algebra, Coordinate Systems, Vector differential operator, Gradient, Divergence,
Curl, Divergence theorem, Stokes theorem, Coulombs law, Electric field intensity, Point, Line,
Surface and Volume charge distributions, Electric flux density, Gauss law and its applications,
Gauss divergence theorem, Absolute Electric potential, Potential difference, Calculation of
potential differences for different configurations. Electric dipole, Electrostatic Energy and
Energy density.

1. INTRODUCTION

Electromagnetics (EM) is a branch of physics or electrical engineering in which
electric and magnetic phenomena are studied. Field is a function that specifies a quantity
everywhere in a region or a space. If at each point of a region or space there is a corresponding
value of some physical function then region is called a field. If the field produced due to the
magnetic effect it is called magnetic field. There are two types of electric charges, positive and
negative. Such an electric charge produces a field around it which is called an electric field.

Moving charges produces a current and a current carrying conductor produce a
magnetic field. In such a case electric and magnetic fields are related to each other. Such a field
is called electromagnetic field. An electromagnetic field, sometimes referred to as an EM field,
is generated when charged particles, such as electrons, are accelerated. All electrically charged
particles are surrounded by electric fields. Charged particles in motion produce magnetic fields.
When the velocity of a charged particle changes, an EM field is produced. Electromagnetic
(EM) may be regarded as the study of the interactions between electric charges at rest and in
motion. It entails the analysis, synthesis, physical interpretation, and application of electric and
magnetic fields.
Natural sources of electromagnetic field: Electromagnetic fields are present everywhere in
our environment but are invisible to the human eye. Electric fields are produced by the local
build-up of electric charges in the atmosphere associated with thunderstorms. The earth's
magnetic field causes a compass needle to orient in a North-South direction and is used by birds
and fish for navigation

Some of the branches of study where electromagnetic principles find application are
RF communication, Microwave Engineering ,Antennas ,Electrical Machines, Satellite
Communication, Atomic and nuclear research, Radar Technology, Remote sensing, EMI EMC,
Quantum Electronics etc.

1.1. VECTOR ALGEBRA
Vector algebra is a mathematical shorthand. Any physical quantity can be represented
either as a scalar or a vector.
A scalar is a quantity that has only magnitude. Quantities such as time, mass, distance,
temperature, entropy, electric potential, and population are scalars.
A vector is a quantity that has both magnitude and direction. Vector quantities include
velocity, force, displacement, and electric field intensity. Another class of physical quantities is
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called tensors, of which scalars and vectors are special cases. For most of the time, we shall be
concerned with scalars and vectors

To distinguish between a scalar and a vector it is customary to represent a vector by a letter

with an arrow on top of it, such as A andB or by a letter in boldface type such as A and B. A
scalar is represented simply by a letter—e.g., A and B. EM theory is essentially a study of some
particular fields.

A field is a function that specifies a particular quantity everywhere in a region. If the
quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples of scalar
fields are temperature distribution in a building, sound intensity in a theater, electric potential in
a region, and refractive index of a stratified medium. The gravitational force on a body in space
and the velocity of raindrops in the atmosphere are examples of vector fields.

Unit Vector

A vector A has both magnitude and direction. The magnitude of A is a scalar written
as A or |A]. A unit vector @, along A is defined as a vector whose magnitude is unity (i.e., 1)
and its direction is along A, that is,

. A
Unit vector aA:m

Note that [as| = 1. Thus we may write A as A = Aa, which completely specifies A in
terms of its magnitude A and its direction a,.

1.1.1.  Sum and Difference of two Vector

Vector Addition

Vector addition has a very simple geometrical interpretation. To add vector B to vector A, we
simply place the tail of B at the head of A. The sum is a vector C from the tail of A to the head
of B. Thus, we write C = A + B. The same result is obtained if the roles of A are reversed B.
That is, C=A + B =B + A. This commutative property is illustrated below with the
parallelogram construction.

Fig 1.1. Vector addition
Since the result of adding two vectors is also a vector, we can consider the sum of
multiple vectors. It can easily be verified that vector sum has the property of association, that is,
(A +B)+C=A4 +(B+0).

Vector subtraction

Since A —B =A + (-B), in order to subtract B from A, we simply multiply B by —1
and then add.
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= |
A-T

Fig 1.2. Vector Subtraction

1.1.2. Multiplication of Scalar and Vector
Vector Multiplication
When two vectors A and B are multiplied, the result is either a scalar or a vector
depending on how they are multiplied. Thus there are two types of vector multiplication:
i. Scalar (or dot) product: A * B
ii. Vector (or cross) product: A X B.
i. Scalar product (“Dot” product)
The dot product of two vectors Aand B, written as A » B. is defined geometrically as
the product of the magnitudes of A and B and the cosine of the angle between them. Thus:
A« B= AB cos 0,5
where 0,5 is the smaller angle between A and B. The result of A * B is called either the scalar
product because it is scalar, or the dot product due to the dot sign. Here 8, is the angle between
the vectors A and B when they are drawn with a common origin.

AA=|AP=A"
ii. Vector (or cross) product

The cross product of two vectors A and B. written as A X B. is a vector quantity
whose magnitude is ihe area of the parallopiped formed by A and B, and is in the direction of
advance of a right-handed screw as A is turned into B.
Thus AXB=ABsin 0,52,

Where a, is a unit vector normal to the plane containing A and B. The direction of an
is taken as the direction of the right thumb when the fingers of the right hand rotate from A to B.
The vector multiplication of Aand B is called cross product due to the cross sign; it is also
called vector product.
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AXB=|Ax A, A,

B, B, B,
AX(B+C)=AXB+AXC
AXA=0
Also note that
a,Xa, =2,
3, Xa; =3
a,Xa,=3a,
azX é_x) B Zl_z>
S.NO | LAWS ADDITION MULTIPLICATION
1. | Commutative | A +B=B+A4 K =Ak

2. | Associative A+B+0O)=A +B)+C k(A )= (k) (A

3. | Distributive k(A+ B)=kA + kB

where k and [ are scalars.

1.1.3. Differentiation
The differential vector operator V is called del or nelba defined as

0 0 __ 0
V = &ax + a—ay+ aaz
There are three possible operations with V.
1. Gradient
2. Divergence
3. Curl

1.1.4. Solenoidal and irrotational vector

A vector A is said to be solenoidal if its divergence is zero. i.e, V.A = 0 then A is said
to be Solenoidal.

A vector A is said to be irrotational if the curl is zero. V.A = 0. Then A is said to be
irrotational.

Identical vector:
Two vectors are identical if there difference is zero. Thus A andB are

identical ifA—B =0

1.2. COORDINATE SYSTEMS
1.2.1.  rectangular co ordinate system
In rectangular co ordinate system three co ordinates axes are at right angle to each other and call
it x,y,z axes. These three axes are intersect at a common point is an origin of the system. At any
point P(x,y,z) is specified as the intersection of three planes.
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X Z=10plane

Fig 1.4 Co ordinate Systems

The x ,y ,z values are constant being the co ordinates value of the point. The unit vector along
the three co ordinate axis are given as @, ,d, ,d@, The components vectors have unit magnitude
and direction. The unit vector have unit magnitude and directed along the co ordinate axis. A
unit vector is given direction is a vector in that direction divided by its magnitude. It is given
by,

_ T

G
_ xa, + ya, + za,
a, =

s

Consider a point P(x,y,z) in Cartesian coordinate system as shown in fig. Then the position
vector of point P is represented by the direction of point P from the origin. If the three
coordinate axes with the magnitude x,y,z. Thus the position vector of point P can be represented
as.

Top = X10, + Y10, + 71@,
The magnitude of the three vectors are,

|rop| = Va2 + y% + 22

W

P(xn,ydz0)

Cartesian Coordinate System

Fig 1.5 Rectangular co ordinate system
Consider the points P(x ,y ,z) and Q(x+dx ,y+dy ,z+dz) in rectangular co ordinate system.

Displacement vector dl = dxa, + dya, + dza,
Differential Volume dv = dxdydz

Ponjesly College Of Engineering 1.5 Electromagnetic Fields

www.AllAbtEngg.com Study Materials for Anna University, Polytechnic & School



www.AllAbtEngg.com

1. Static Electric Field

Figurel.5 shows the six planes define a rectangular parallel piped. The differential
length dI from P to Q is the diagonal of the parallel piped is given by,

dl = /dx? + dy? + dz?

i

P"-- 3 -. 3

X
Fig.1.6. differential length and differential elements in Cartesian co ordinate system
The differential area ds; = dxdy (normal to z direction)
ds, = dydz (normal to x direction)
ds; = dzdx (normal to y direction)
The differential volume dv = dxdydz
1.2.2. Cylindrical Coordinate System
One coordinate system that we work in is the standard Cartesian (x,y,z) system. But, if
you are doing a problem with either spherical symmetry (going out the same distance in the x,
y, and z directions is the same) or cylindrical symmetry (this means symmetry about one axis),
using different coordinate systems may make the problem easier. For example, suppose you are
trying to calculate the electric field due to a line of charge lying on the z-axis. The electric field
at (1, 0, 0) is the same as the electric field at (0, 1, 0). The only thing that matters is the distance
from the z-axis. For this problem, it may be Easier to work in cylindrical coordinates.

Fig 1.7 Cylindrical co ordinate system
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Intarsection z
of r = Constant i
and z = Constant r = Constant cylindar
is a circle Pir. 9, 2)

z = Constant plane

Intersaction of
r = Constant and
& = Constant is
a straight line

Fig 1.8.Representing point P in cylindrical system

The cylindrical co ordinate system is the three dimensional version of the polar co
ordinate of analytical geometry. In this system consider any points as the intersection of three
mutually perpendicular surfaces.

# +
'?‘?ﬂr\ f4
il -
‘f‘ﬁﬁ’i&?"‘*r (4. 4. 24)
o
o ’“*f"-'-a-J:.w‘;
¥ %};gﬂ@;ﬂ 21 ¥
*?»k:g:
" L8
] ‘\
X "'\
(@) Cylindrical co-ordinate system " {b) Point P {ry, &y, Z4)
Fig 1.9. Analytical geometry of cylindrical co ordinate system
The surface used to defined the cylindrical co ordinate system are,
i Plane of constant z which parallel to xy plane.
ii. A cylinder of radious r with z axis as the axis of the cylinder.
ii. A half perpendicular to xy plane and at an angle ® with respect to xy plane.
The angle @ is called azimuth angle,
The ranges of variable,
0<r<mo
0<P<2rn
-0 <7 <o
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They are a circular cylinder ( p= constant) a plane ( @ = constant) and another plane (z =

constant). The co ordinates are p,®,z. A differential volume element in cylindrical co ordinates
may be obtained by increasing p,® and z by the differential increments dp, d® and dz.

£ Z

¢ = Constant
plane

{a) r = Constant {b) ¢ = Constant (c) z= Constant

Fig 1.10. differential increments dp, d® and dz
The differential length dl = \/(dp)? + (pd@)? + (dz)?
The shape of this small volume is truncated. As the volume element becomes very small, its

shape approaches that of a rectangular parallelo piped. It has side of the length dp, pd®,dz.
Unit Vectors:

The unit vectors in the cylindrical coordinate system are functions of position. It is
convenient to express them in terms of the cylindrical coordinates and the unit vectors of the
rectangular coordinate system which are not themselves functions of position.

__ P _xx+yy _ + Vi
a,=—=——"==Xcos@ + ysing
P p p

@ =Zxp = —Xsing + ycos@

Z=17
The differential length in p and z direction are dp and dz respectively. In ¢ direction
de there exists as differential are length in ¢ direction. This differential length due to d¢ in
@direction is pd¢ as shown in fig.
Thus the differential length are,
dp= differential length in p direction
pde=differential length in ¢ direction
Dz= differential length in z direction.
The differential length dl = ,/(dp)? + (pd¢)? + (dz)?
The differential area ds = dpdz (p,z plane)
ds = pdpd® (p,d plane)
ds = pd®dz (D,z plane)
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z+dz

r
r+dr

Fig 1.11 Differential Volume element in cylindrical co ordinate system
The differential volume dv = pdpdddz
1.2.3.  Spherical co ordinate system

In this system consider any point as the point of intersection of the spherical surface
(radious r= constant) (6 = angle between r and z) (® = constant).

- z

(a) fﬁ:‘gﬂ. n:::h: d; i (b} E’l'ﬁt ':Lriu‘lt:; ﬁ:rl: {c) :lum; ;:;:: :erpandlcuinr
Fig 1.12. Spherical co ordinate system
i The sphere radius r origin as the center of the sphere.
il. A right circular cone with its apex at the origin and its axis as z axis. Its half angle
is ©. It rotate about z axis and 0 varies from 0 to 180.
ii. A half plane perpendicular to xy plane containing z axis, making an angle ® with
the xz plane.
The co ordinate of this systems are r, 6, ©.
The ranges of variable are,
0<r<w
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0<d<2n

0 <0 <m as half angle.

Spherical Polar Coordinate System

Fig 1.14 Spherical co ordinate system
The differential volume element may be obtained in spherical co ordinate by increasing r, 6, ®
by dr,d6 and d®. The side of this volume elements are dr, rd®, rsin6 d®.

The differential length dl = /(dr)? + (rd8)2 + (rsin@de)?

The differential area ds=rdrdb (r,0 plane)
ds =rsin0 d® dr (r,® plane)
ds = r’sin6 d6 d® (6,@ plane)

The differential volume dv = r?sinfdr d6d®

r sin d¢

Fig 1.15 Differential Volume in Spherical co ordinate system

Ponjesly College Of Engineering 1.10 Electromagnetic Fields

www.AllAbtEngg.com Study Materials for Anna University, Polytechnic & School



www.AllAbtEngg.com

1. Static Electric Field

Table : Differential lengths, surface area, and volume elements for each geometry. The surface
element is subscripted by the coordinate perpendicular to the surface.

Cartesian Cylindrical coordinate . .
. Spherical co ordinate system
coordinate system system
The di= di= di=
differential | \/dx? + dy? + dz? | \/(dp)? + (pd@)? + (dZ /(dr)? + (rd@)? + (rsinfd¢
length
The ds;=dxdy(x,yplane) | ds=dpdz (p,zplane) | ds=rdrdd (r,0 plane)

differential | ds,=dydz(y,zplane) | ds = pdpd® ( p,® plane) | ds=rsin@ d® dr  (r,® plane)
area ds;=dzdx(z,xplane) | ds=pdddz (®d,zplane) | ds=r’sin®@ d6 dd (©,P plane)

The

. . _ _ 2
differential dv = dxdydz dv = pdpdddz dv =r"sinO dr d0 d®

volume

1.2.4. VECTOR TRANSFORMATION
It is necessary to transform a vector from one co ordinate system to another co ordinate

system. Transformation of a vector between Cartesian and cylindrical co ordinate system,
Cartesian and spherical system are carried out.
(i) Transformation between Cartesian and Cylindrical coordinates:

Let us consider A = Apap+ A®ad+ Az az is to be expressed in Cartesian co

ordinate as A = Axa,+Aya, +Aza, in doing so that

® e, v 2)=Pip, o z)

Fig 1.16: Relationship between (x, y, z) and (p, @,z).
x=pc080,y=psin6 z=z
P=x2% + y2, @:tan'li—l, z=z
In matrix form, the transformation of vector A from (4x,A4y,Az) to(Ap, AD, Az) as
Ponjesly College Of Engineering 1.11 Electromagnetic Fields
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Ax cos @ sin®@ 0] [4p]
Ay|=|-sin® cos @ 0| |AD
Az 0 0 11 LAz ]

The inverse of the transformation (4p, AD, Az) to (4x,Ay,Az)

Ap cos @ —sin®@ 0][Ax]
AD| = |sin®@ cos@®@ O0f|Ay
Az 0 0 11LAZ]

(ii) Transformation between Cartesian and Spherical coordinates:
The space variables (x, y, z) in Cartesian coordinates can be related to variables (r, 0,
@) of a spherical coordinate system. Given a vector A = Ar ar +A60a, + Agpa, in the spherical

polar coordinate system, its component in the Cartesian coordinate system can be found out as
follows

[x2 2
r=yJx% +y2 + 22, 0=tan”" "2~ Z+y , d&zmn‘%
(or)

x=rsinB cos ®,y=rsin O sin ®, z=rcos 6

In matrix form, the (4x, Ay, Az) — (Ar, A6, A®) vector transformation is performed according
to

Z

p=rsin §
Hx<:&xh“wﬁmyﬂ=ﬂnﬂ@:ﬂg&ﬂ

o |
s
1=rcos d / |
s |
4,// i
/- |
T = i P
3 - I'}“ : | ///_:::pmsq&
~ y=psing

Figl.17 Relationships between space variables (x, y, z), (1,6, @) and (p, D, z).

Ar sinbcos @ sinfsin® cosO ] [Ax
AB | = |cosOcos®@ cosbsin®@ —sind| |Ay
AD —sin® cos @ 0 I11lAz

The inverse transformation (Ar, A6, A®D) — (Ax, Ay, Az) is similarly obtained,
Ax sinbcos @ cosbcos®@ —sind] [Ar
Ay| = Isin@sin@ cosOsin®@ cos @ | | AO
Az cos® —sinf 0 1lA®D
Thus we see that a vector in one coordinate system is transformed to another coordinate system

through two-step process: i. Finding the component vectors ii. variable transformation.
(iii) Transformation between cylindrical and Spherical coordinates:
Point transformation between cylindrical and spherical coordinates is obtained using

=r=Jp* + 2%, %tan'lf, o=@
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p=rsin6, z=rcost, O=@
In matrix form, the (Ar, 46, A®D) to (Ap,AD.Az )vector transformation is performed according to

Ar sin@ 0 cosO]1[Ap
AB| =|cos@ 0 -—sinb||AD
AD 0 1 0 Az

In matrix form, the (4p,A D,Az)to (Ar, A6, A®D) vector transformation is performed according to

Ap sind cos@ O][Ar
Aol=| 0 0 1| A6
Az cosf@ —sin@ O0lLAD

1.3. VECTOR DIFFERENTIAL OPERATOR
The del operator,written V,is the vector dif ferential operator.

In Cartesian coordinates,
9 __ o0 _ 0 __
V = &ax + @ay+ aaz
This vector differential operator, otherwise known as the gradient operator, is not a vector in
itself, but when it operates on a scalar function, for example, a vector ensues. The operator is
useful in
1. The gradient of a scalar V, written, as W
2. The divergence of a vector A, writtenas V * A
3. The curl of a vector A, written as V X A
4. The Laplacian of a scalar V, written as V> V
Each of these will be defined in detail in the subsequent sections. Before do that, it is
appropriate to obtain expressions for the del operator V in cylindrical and spherical coordinates.
V in cylindrical coordinates:
To obtain V in terms of p, @z and

o=/x% + y{@ztan"ii

Hence
a d sin@o
$=COS¢6—— > a—(p
d ) 0 cos@0
a—y=SlTl IO-F - 30
V—ap:—p+a¢:—):—‘p+azgz

V in spherical coordinates:

[+ 2 2
r=yx% + y2 + 72 ,%tan'l%ﬂ , Qﬁtan'%

d cosfcosp 0 sin®@ad

$=sm6’cos¢a+ " 20 L

0 cosfsing 0 cos®@ad

E=sin95in¢a+ - 69+ > 00
0 0 sinf 0
& = cos6 E - T%
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www.AllAbtEngg.com Study Materials for Anna University, Polytechnic & School



www.AllAbtEngg.com

1. Static Electric Field

0 _ ~ 1o _ 1 o
\Y =aar + ag ;%+a¢m%
The unit vectors are placed to the right of the differential operators because the unit vectors
depend on the angles.
1.4. CURL , DIVERGENCE, GRADIENT
1.4.1.  Definition Of Curl
The curl of A is an axial (or rotational) vector whose magnitude is the maximum
circulation of A per unit area as the area lends to zero and whose direction is the normal
direction of the area when the area is oriented so as to make the circulation maximum.
The circulation of a vector field around a closed path is given by curl of a vector.
Mathematically it is defined as,

) .dl
(curlof H)N = limyg, o (SﬁAI:N )

Where ASy — Planar area enclosed by the closed line integral

The subscript N indicates that the components of the curl is that component which is normal to
the surface enclosed by the closed path. The maximum circulation of h per unit area tends to
zero whose direction is normal to the surface is called curl of H.

Symbolically represented as [Curl H=V x H|

In rectangular co ordinate system X,y and z of the curl H are given by,

[ gy oM [ony_one o
CurlH=>VxH % o L2 + P ol L2 + o % a,
a, a, a,
Vil a ad 0
xXH=|7= 7+ +
dx 0y 0z
H, H, H,
In cylindrical co ordinates
_[1one o) gy (o _oe) g [Lopte _ 1005
CulH=> VxH > pl [ P op | %o » op » o | %z
a, ra, a,
VxH 1] 7] a
XH=—|5= 7 =+
rljor de 0z
H. H, H,
In spherical co ordinates
__1 OHg sind 6H_9] — l[ 1 8Hr BrH(p] —, 1 [arHG _ aﬂl J—
Curl H=VxH rsinB[ a6 @ ar + r Lsin@ d¢ ar Qo r ar a0 Qo
a, a, a,
— 1 a a 0
VxH

T 1rZsin@|ox dy o0z
H, H, H,
Thus maximum circulation of F per unit area tends to zero whose direction is normal to the
surface is called curl of F.
Note the following properties of the curl:
e The curl of a vector field is another vector field.
e The curl of a scalar field V, V X V, makes no sense.
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e VX(A+B)=VXA+VXB

e VX(AXB)=A(V+*B)-B(V-A)+(B*VA-(A+V)B

e VX(VA)=VVXA+VVXA

e The divergence of the curl of a vector field vanishes, that is, V ¢« (V X A) =0.

o The curl of the gradient of a scalar field vanishes, that is, VX VV = 0.
1.4.2.  Divergence

Divergence of vector field D at a point P is the outward flux per unit volume as the

volume shrinks about point P. i.e, lim AV — 0 representing differential volume element at

point P.
. . . Ads

Divergence of D = div D = limay_o §, v

Div A =V.D — divergence of D
9 ) )
V= vector operator = P Dx+a_y D, + P D,

The divergence of vector flux density A is the outflow of flux from a small closed
surface per unit volume as the volume shrinks to zero. i.e, V. A = 0. The positive divergence for
any vector quantity indicates a source of that vector quantity at a point. Similarly a negative
divergence indicates a sink.

VD= % DX% D, + % D, This is the divergence of D in Rectangular system.

In cylindrical system

. 10 10D dDz
V. D(le D) = Ba (pr) + BW + ﬁ
In spherical System
di 190 ., 1 0(sin0@Dy) 1 dD,
V-D(divD) = ﬁﬁ(r Dr) + r sin@ 00 rsin® d¢

The vector field having its divergence zero is called solenoidal field. V. A= 0 for A to be
solenoidal
Note the following properties of the divergence of a vector field:

e It produces a scalar field (because scalar product is involved).

e  The divergence of a scalar V, div V, makes no sense.

e V< (A+B)=V*A+V+B

e V+(VA)=VV+A+A VV
1.4.3. Gradient

The gradient of a scalar is a vector. Consider V be the unique function of X,y,z

coordinates in rectangular system. This is the scalar function and denoted as V(x,y,z). The
vector operates in Cartesian system denoted V called del.
The vector operator, V = %ﬁ; + aiyﬁ; + %a‘z

ov __ ov __  ov _ .
The scalar operator, V.V = o ax Tt an +—a, 1e,

0z
V.V=grad V
In rectangular co ordinate system,
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In cylindrical system,
— 6v_+ 1 av_+6v_
T T poee Tz

In spherical system,
ov_  10v_ 1 odv__
VV = aar + F%ae + m%a(‘,
Properties of Gradient:
. The gradient VV gives the maximum rate of change of V per unit distance.
. The gradient VV always indicates the direction of the maximum rate of change of V
1.5. DIVERGENCE THEOREM
Statement
The volume integral of the divergence of a vector field over a volume is equal to the

surface integral of the normal component of this vector over the surface bounding this volume.

J'J' VAdv = ﬁx.ds

Proof: Let us consider a volume V enclosed by a surface S . Let us subdivide the
volume in large number of cells. Let the k™ cell has a volume V and the corresponding surface
is denoted by Sk. Interior to the volume, cells have common surfaces. Outward flux through
these common surfaces from one cell becomes the inward flux for the neighboring cells.
Therefore when the total flux from these cells is considered, get the net outward flux through
the surface surrounding the volume. The divergence theorem can be applied to any field but
partial derivatives of that vector must exist. The divergence theorem is applied to the flux
density. Both sides of the divergence theorem give the net charge enclosed by the closed
surface. It converts the surface integral into volume integral provided that the closed surface
encloses certain volume. It is applied with Gauss law.

The divergence of any vector A is given by
_oAx ody odz
V.4 o, Uy O,

fb)
Fig 1.18 Divergence theorem
Take volume Integral on both sides,
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1. Static Electric Field
- OAx 8A 0Az
[ jj VAdv = H [ [ yy ~ i'dxdydz

Consider an element volume in x direction,
J:U— dxdydz ﬂ[f%ﬁc.dx}dydz

x2

J‘ %dx:A’Q —Ax; = Ax
Ox

But,

x1

Then,
% dedvae = avdvie = Jf s,

Where dsx = x component of surface area ds.

ﬂj GAy dxdydz —H Ay dsy
_UI— dxdydz J.Azdsz
. m V.A dv m[‘%x Ay, aﬂdxdydz

0
= '[ J (As dsx+ Aydsy + Az dsz)

:ﬁ;i.ds
| VAdv =ffA.ds

Hence proved.

1.6. STOKES THEOREM
Statement

Stokes's theorem states that the circulation of a vector field A around a (closed) path
is equal to the surface integral of the curl of A over the open surface S bounded by L provided
that A and V X A are continuous S.

The line integral of a vector around a closed path is equal to surface integral of the
normal component of its equal to the integral of the normal component of its curl ever any
closed surface.

fH.dl - [[VxHds

Proof Consider an arbitrary surface. This is broken up into incremental surfaces of areas Vs
as shown in Fig.
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1. Static Electric Field

If H is any field vector, then by definition of the curl to one of these incremental
surfaces. The Stokes theorem relates the line integral. It states that, The line integral of H
around a closed path L is equal to the integral of curl of H over the open surface S enclosed by
the closed path L. Mathematically it is expressed as,

$ H.dl= [ (VxH) ds dl- Perimeter of total surface S

Fig 1.19 Stokes theorem
Stokes theorem is applicable only when H and VxH are continuous on the surface S. The path
L and open surface S enclosed by the path L.

§ H.dIVs
Vs

Where N indicates normal to the surface and dlVs indicate that the closed path of an

=(VxH)N

incremental area Vs.
The curl of H normal to the surface can be written as

§ H.dlVs
L —(VxH).aN,
Vs
§ H.dlVs
L —(VxH).aNVs
Vs
=(VxH). Vs.

Where ay is a unit vector normal to Vs.
The closed integral for whole surface S is given by the surface s integral of the normal

component of curl H.

§H.dl - ijxH.ds

.. Hence proved
1.7. COULOMBS LAW
Coulomb's law is an experimental law formulated in 1785 by the French colonel,
Charles Augustin de Coulomb. It deals with the force a point charge exerts on another point
charge. By a point charge we mean a charge that is located on a body whose dimensions are
much smaller than other relevant dimensions. For example, a collection of electric charges on a
pinhead may be regarded as a point charge. Charges are generally measured in coulombs (C).
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1. Static Electric Field

Coulomb's law states that the force f between two point charges (Q1 and Q2 is):
. Along the line joining them
. Directly proportional to the product Q1Q2of the charges
. Inversely proportional to the square of the distance R between them.
Point charge is a hypothetical charge located at a single point in space. It is an
idealized model of a particle having an electric charge.

Qi o o
R

Consider two point charges Q; and Q, as shown in figure separated by a distance R.
The force acting along the line joining Q; and Q,. The force exerted between them is repulsive
if the charges a same polarity. While it is attractive if the charges are of different polarity.

Mathematically,
Fo Q;{(le
Q; and Q, are expressed in Coulombs (C) and R is in meters. Force F is in Newton’s (N)
F=K%42
Where k is the proportionality constant.
1
" 4me
1 0,0,
" 4me R?

€ is called the permittivity of free space. e=gqg,

€0 — permitivity in free space = 8.854 x10"% = $X10_19F/m

€, — Relative permitivity

(If the charges are any other dielectric medium, we will use instead where is called the relative
permittivity or the dielectric constant of the medium).

—_—

e

0
Fig 1.21 Coulomb vector force on point changes Qy and Q2.
Consider the two point charges Q; and Q, located at the points having r; and r,. The
force exerted by Q; and Q, act along the direction R;,. Where a,, is the unit vector form can be
expressed as,
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1. Static Electric Field

- 1 QQ;
12 = 2 d12
4megy Ry,
a;, - unit vector along

vector

2= magnitude of vector
s = Riz R _ TN
127 Rzl ~ Rzl [z

It is worthwhile to note that
The force expressed by coulombs law is a mutual force for each of the two charges
experiences a force of the same magnitude but opposite direction
F{=-F, = 1 0102?2 1 Q1Qza_21
4Amey Ry, 4mey R,,2
Coulombs law is linear if any one charge is increased n times then the force exerted
also increased by n times. Then the force exerted also increased by n times

F = —F, then nF, = .—nFZ n- scalar
Q‘ Dz ﬂ1 QE
i (a) Fa 1 (b) F2
01 Qz q‘l qi‘
(c) (d)

Fig.1.22. Signs of Q1 and Q2
. Like charges (charges of the same sign) repel each other while unlike charges attract.
. The distance R between the charged bodies Q1 and Q2 must be large compared with
the linear dimensions of the bodies; that is, Q1 and Q2 must be point charges.
. Q1 and Q2 must be static (at rest).
. The signs of Q1 and Q2 must be taken into account.
Steps to Solve Problems on Coulomb's Law

Step 1: Obtain the position vectors of the points where the charges are located.

Step 2: Obtain the unit vector along the straight line joining the charges. The
direction is towards the charge on which the force exerted is to be calculated.

Step 3: Using Coulomb's law, express the force exerted in the vector form.

Step 4 : If there are more charges, repeat steps 1 to 3 for each charge exerting a force
on the charge under consideration.

Step 5: Using the principle of superposition, the vector sum of all the forces
calculated earlier is the resultant force, exerted on the charge under
consideration,
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1. Static Electric Field

1.8. ELECTRIC FIELD INTENSITY

The electric field intensity (or electric field strength) K is the force per unit charge
when placed in the electric field.

Thus E=limg_o 7
or simply
F
E=-
Q

(b)
Figl.23. Electric field intensity

The electric field intensity E is obviously in the direction of the force F and is

measured in Newton/coulomb or volts/meter. The electric field intensity at point r due to a point
charge located at r1 is readily obtained using

F Q Q r—-n
4megRy,% |F — 1y

Fig.1.24. E due to n number of charges
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1. Static Electric Field

For N point charges Q1 Q2,. . ., QN located at rl, r2,. . ., N, the electric field intensity at point
r is obtained from

B Q1 r—n Q1 7-1; Q1 F-—1y
4Tey |F— i3 4ATE |F — i3 4mgg |F — iy |3
or

N _
1 Qu (T — Fy)
4-7T€0k 4 Ir — 7|3

E=

1.9. POINT, LINE, SURFACE AND VOLUME CHARGE DISTRIBUTIONS

The forces and electric fields due to point charges, which are essentially charges
occupying very small physical space. It is also possible to have continuous charge distribution
along a line, on a surface, or in a volume as illustrated in Figure. It is customary to denote the
line charge density, surface charge density, and volume charge density by pL (in C/m), ps (in
C/m2), and pv (in C/m3), respectively. These must not be confused with p (without subscript)
used for radial distance in cylindrical coordinates. The charge element dQ and the total charge
O due to these charge distributions are obtained.

Line charge density is denoted asp 1. it is the ratio of total charge in coulomb to total
length in meters
_ TOTAL CHARGE IN COLUME
" TOTAL LENGTH OF THE LINE (/M)

Surface charge density is denoted asps. it is the ratio of total charge in coulomb to total
Surface area in meter”

P

_ TOTAL CHARGE IN COLUME

Ps = TOTAL SURFACE AREA
Volume charge density is denoted asp . it is the ratio of total charge in coulomb to
total Volume in meter’

(c/M?

_ TOTAL CHARGE IN COLUME

= c/M?
Py TOTAL VOLUME (/M7
Pr  +
ik
Q 5%
+ ®
Point charge Line charge Surface charge Volume charge
Fig 1.25. Various charge distributions and charge elements.
dQ = pldL »Q = [, p,dL (line charge)
dQ = pSdS »Q = [, pdS (surface charge)
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dQ = pVdS -Q = [, p,dV  (volume charge)

The electric field intensity due to each of the charge distributions pL, ps, and pv may
be regarded as the summation of the field contributed by the numerous point charges making up
the charge distribution. Thus by replacing O, with charge element
dQ = pLdl, ps dS,or pv dv and
Integrating,

paL
E = f P a;, (line charge)
L A& Ry

Js psds

E= > @1, (surface charge)

s 4megRyy

pyav
E = f yr—— a;, (volume charge)
v A& Ry

It should be noted that R* and aj;vary as the integrals are evaluated.

i. Point Charge
The point is very small compared to the surrounding surface area.
_F
Q
Q
T ARy 2
il A Line Charge

Line charge

Fig.1.26 line charge
Consider a line charge with uniform charge density pL extending from 4 to B along the
z-axis as shown in Figure. The charge element dQ associated with element d/ = dz of the line is
dQ = p dL= prdZ

And hence the total charge Q is
ZB

Q= p dL
ZA
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1. Static Electric Field

dL
E = j —pL 2 apr12
s 4mggRyp

0,0,2)T
By

@020 |
il

Fig 1.27. Evaluation of the E field due to line Charge
iii. A Surface Charge

Fig.1.28 surface charge
Consider an infinite sheet of charge in the xy-plane with uniform charge density ps. The
charge associated with an elemental area dS is
dQ =psdS = ps p d® dp

and hence the total charge is
52

Q=] pgds
S1

The contribution to the E field at point P(0, 0, /) by the elemental surface 1 shown in Figure,

ds
E :J _Ps® a1,
s 4megRy;
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1. Static Electric Field

Fig1.29. Evaluation of the E field due to an infinite sheet of charge

iv. A Volume Charge
dv
'I'+ + + p\p
+ : ++ +
- + ++ 3
+
+ + -
+ -
+ * 3 aﬂ
+ o+
R

Fig.1.30. volume charge
Let the volume charge distribution with uniform charge density pv be as shown in Figure.
The charge dQ associated with the elemental volume dv is
dQ=pvdv
and hence the total charge in a sphere of radius « is
Q= pydV =p, f dv
Vi Vi

The electric field dE at P(0, 0, z) due to the elementary volume charge is,

_ dv
E :f pV—Zm
v 4megRy;
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1. Static Electric Field

Figl.31. Evaluation of the E field due to a volume charge distribution.
1.10. ELECTRIC FLUX DENSITY

’ em—— .
[ o e N
-
N
o N
L ————aea -8 -0
#
o oyl
I = __.r"}’l
N - '
— -
A" <
-
kY T '
~ F
Flux linas

Fig.1.32 flux line
The flux due to the electric field E can be calculated using the general definition of
flux.

Flux lines Flux lines

N N
/l\‘ il "

(a) (b)

Fig.1.33 flux line
For practical reasons, however, this quantity is not usually considered as the most
useful flux in electrostatics. Also the electric field intensity is dependent on the medium in
which the charge is placed. Suppose a new vector field D independent of the medium is defined

by
D=¢E
-9
4TR; 2>
Electric flux fin terms of ‘P,
¥=[D.dS
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1. Static Electric Field
In ST units, one line of electric flux emanates from +1 C and terminates on - 1 C.
Therefore, the electric flux is measured in coulombs. Hence, the vector field D is called the

electric flux density and is measured in coulombs per square meter. For historical reasons, the
electric flux density is also called electric displacement.

A volume charge distribution
— dv
D= f Py a1
174 47'[R12

D is a function of charge and position only; it is independent of the medium.

Unit surface area

Fig.1.34 Electric Flux density

Consider a unit surface area as shown in the Fig.

The number o! flux lines are
passing through this surface area.

The net flux passing normal through the unit surface area is called the electric flux
density. It is denoted as D. It has a specific direction which is normal to the surface area
under consideration hence it is a vector field.

Consider a sphere with a charge Q placed at its centre. There are no other charges
present around. The total flux distributes radially around the charge is w=0Q. This flux
distributes uniformly over the surface of the sphere.

Now, y =, Total flux

While, S = Total surface area of sphere
Then electric flux density is defined as,

D= —-"Isi in magnitude

As y is measured in coulombs and § in square metres, the units of D} are C/m?. This
is also called displacement flux density or displacement density.
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1. Static Electric Field

Vector Form of Electric Flux Density

Consider the flux distribution, due to a
certain charge in the free space as shown in
the Fig.

Consider the differential surface area d5 at
point P. The flux crossing through this
differential area is dy. The direction of D is
same as that of direction of flux lines at that
peint. The differential area and flux lines are
at right angles to each other at point P. Hence
the direction of D is also normal to the surface
area, in the direction of unit vector a, which is normal to the surface area dS. Near point
P, all the lines of flux dy are having direction of that of a, as the differential area dS is
very small. Hence the flux density D at the point P can be represented in the vector form

Fig. Flux through dS

as,
D = %T— a, C/m?
where dy = Total flux lines crossing normal through the
differential area dS
dS = Differential surface area
an, = Unit vector in the direction normal to the differential

surface area
1.11. GAUSS LAW AND ITS APPLICATIONS

Gauss Law
Gauss's law states that the total electric flux ¥ through any closed surface is equal to
the total charge enclosed by that surface. Y = Qenc
Y= [d¥ =[D.dS
Total charge enclosed Q = fVl pydVv
4
Closed
I'FE(jL.II.‘!"
;n surface
Fig 1.35. Flux through irregular surface area
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Gauss's law provides an easy means of finding E or D for symmetrical charge distributions such

as a point charge, an infinite line charge, an infinite cylindrical surface charge, and a spherical
distribution of charge. A continuous charge distribution has rectangular symmetry if it depends

only on x (or y or z), cylindrical symmetry if it depends only on p or, spherical symmetry if it
depends only on r (independent of & and@). It must be stressed that whether the charge
distribution is symmetric or not, Gauss's law always holds.

Applications

The procedure for applying Gauss's law to calculate the electric field involves first
knowing whether symmetry exists. Once symmetric charge distribution exists, we construct a
mathematical closed surface (known as a Gaussian surface). The surface is chosen such that D
is normal or tangential to the Gaussian surface. When D is normal to the surface, D * dS =D dS
because D is constant on the surface. When D is tangential to the surface, D ¢ dS' = 0. Thus we
must choose a surface that has some of the symmetry exhibited by the charge distribution.
i Point Charge (Proof of gauss law)

Suppose a point charge Q is located at the origin. To determine D at a point P, it is easy to
see that choosing a spherical surface containing P will satisfy symmetry conditions.

Thus, a spherical surface centered at the origin is the Gaussian surface in this case and is
shown in Figurel.18. Since D is everywhere normal to the Gaussian surface, that is, D = D,a,
applying Gauss's law (¥ = Q enclosed) gives

Gaussian surface

Figl1.36. Gaussian surface about a point charge.

0=§¢D,.dS = D,.$dS
where § dS = fozn Jyr2sin@do dp = 4mr? is the surface area of the Gaussian surface. Thus

_Q
D 2Rz AR
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1. Static Electric Field

ol

Point charge

Fig 1.37 Proof of gauss law

il. Infinite Line Charge

Suppose the infinite line of uniform charge pL C/m lies along the z-axis. To determine D at
a point P, choose a cylindrical surface containing P to satisfy symmetry condition as shown in
Figure. D is constant on and normal to the cylindrical Gaussian surface; that is, D = Dpap. If
we apply Gauss's law to an arbitrary length / of the line

_— line charge e, Clm

_—Gaussian surface

Fig 1.38. Gaussian surface about an infinite line charge
Q=¢D.dS = D,.$dS
¢ dS = 2mpl is the surface area of the Gaussian surface. Note that [ D e dS evaluated on the
top and bottom surfaces of the cylinder is zero since D has no z-component; that means that D
is tangential to those surfaces. Thus

— ol o
D 2mp a,

1. Infinite Sheet of Charge
Consider the infinite sheet of uniform charge ps C/m’ lying on the z = 0 plane. To
determine D at point P, we choose a rectangular box that is cut symmetrically by the sheet of
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charge and has two of its faces parallel to the sheet as shown in Figure. As D is normal to the
sheet, D = D.a,, and applying Gauss's law gives

psf dS=0Q =§ D.dS = Dy.[[ dsiop + J dShotiom]

Infinite sheet of
charge po C/m? D
\

! Arca A
i :

/ \_[J/\ Gaussian surface
.
D

Fig 1.38. Gaussian surface about an infinite line sheet of charge.
Note that D * dS evaluated on the sides of the box is zero because D has no components along
a, and a,. If the top and bottom area of the box each has area 4,
psA=Dz(A+ A)

and thus
_ pS__
D =—
2 2
_ D
AndE=—-= p__z
€ 2

iv. Uniformly Charged Sphere
Consider a sphere of radius @ with a uniform charge pv C/m’. To determine D everywhere,
construct Gaussian surfaces for cases 7 > @ and r < a separately. Since the charge has spherical
symmetry, it is obvious that a spherical surface is an appropriate Gaussian surface.

Gaussian surface

Fig 1.39. Gaussian surface for a uniformly charged sphere when: (a) » > a and (b) r < a.
For r < a, the total charge enclosed by the spherical surface of radius r,
Qenc=[p,dV=p, [dV = p, fozn Jy J, r*sinbdrdede
=py gnr3
And W= [D.dS=D,.$dS = D, [ [T r%sin0dod ¢
=D, 4mr?

Hence ¥ = Qenc gives
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1. Static Electric Field

%
D, 4nr? =p, —nr3
\ Py 3

Or D, = pvgar 0<r< a
For r > a, the Gaussian surface is shown in Figure. The charge enclosed by the surface is the
entire charge in this case, that is,
Qenc=[p,dV=p, [dV = p, fozn Jy I, r*sinbdrdode
=py %na3
While W= [ D.dS=D,.§dS = D, [ [T r?sin0dod ¢
=D, 4mr?
V¥ = Qenc

D, = p, 372 ar
Thus from above equations D everywhere is given by,
Py %ar 0 <r<a
- 3
Py 7 ar r=a
and |D] is as sketched

ap,
el 3’

rpb’

3

i
I
I
|
|
|
I
I
|
I
ia

0

Fig 1.40. Sketch of |D| against » for a uniformly charged sphere.

1.12. GAUSS DIVERGENCE THEOREM
According to Gauss law,

Q=[D.dS = fVl pydv
= Total charge enclosed Q = fVl pydVv

Q=[D.dS = fVl pydv
By applying divergence theorem to the middle term,

éD.dSz fV.DdV

Comparing the two volume integrals,
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py =V.D
This is the first of the four Maxwell’s equations to be derived. Above equation states that the
volume charge density is the same as the divergence of the electric flux density. This should
not be surprising to us from the way we defined the divergence of a vector. Gauss's law is an
alternative statement of Coulomb's law; proper application of the divergence theorem to
Coulomb's law results in Gauss's law.

1.13. ABSOLUTE ELECTRIC POTENTIAL

ar

4TCSOR12 2

_ B Q -
Vap= QfA dmeoR122 a, o drar

Vag= Vi- Vyu
where Vg and V, are the potentials (or absolute potentials) at B and A, respectively. Thus the
potential difference Vg may be regarded as the potential at B with reference to A. In problems
involving point charges, it is customary to choose infinity as reference; that is, assume the
potential at infinity is zero. Thus if V4 = 0 as r, —, the potential at any point (rg — r) due to a

point charge Q located at the origin is
Q
4megR

E points in the radial direction, any contribution from a displacement in the 6 or 7 direction is

aR

wiped out by the dot product E « dl = E cos 6 dl = E dr. Hence the potential difference V3 is
independent of the path as asserted earlier.

The potential at any point is the potential difference that point and a chosen point at
which the potential is zero

In other words, by assuming zero potential at infinity, the potential at a distance r from
the point charge is the work done per unit charge by an external agent in transferring a test
charge from infinity to that point. Thus

V=—[Eed

Considered the electric potential due to a point charge. The same basic ideas apply to
other types of charge distribution because any charge distribution can be regarded as consisting
of point charges. The superposition principle, which we applied to electric fields, applies to
potentials. For n point charges Q1, Q2,... ,Qn located at points with position vectors r b 12,. . .,
rn, the potential at r is

v=—% o .2 CERN
4neoR1 ™V 4mggR2 R2T T meoRn “ KD
_ 1 s Qk
4meg k=1 4megRk Rk
E=-VV

The electric field intensity is the gradient of V. The negative sign shows that the direction of E
is opposite to the direction in which V increases; E is directed from higher to lower levels of V.
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Since the curl of the gradient of a scalar function is always zero (V X VV = 0), E must be a
gradient of some scalar function.

1.14. POTENTIAL DIFFERENCE

To move a point charge Q from point 4 to point B in an electric field E as shown in
Figure. From Coulomb's law, the force on Q is F = QF so that the work done in displacing the
charge by d/ is

Origin

Fig 1.41. Displacement of point charge Q in an electrostatic field E.
dW=-Fedl=-QF 1
The negative sign indicates that the work is being done by an external agent. Thus the total
work done, or the potential energy required, in moving Q from A to B is
W=-Q[Fedl =-QfE ¢ dl
Dividing W by Q gives the potential energy per unit charge. This quantity, denoted by V3, is
known as the potential difference between points 4 and B. Thus

w B
VAB:?Z —QfA E o dl
. In determining V5, A is the initial point while B is the final point.
. If VAB is negative, there is a loss in potential energy in moving Q from 4 to B; this

implies that the work is being done by the field. However, if VAB is positive, there is a gain in
potential energy in the movement; an external agent performs the work.
. VAB is independent of the path taken (to be shown a little later).
e VAB is measured in joules per coulomb, commonly referred to as volts (V).
The potential difference between points 4 and B is independent of the path taken. Hence,
Vas=- V4

1.15. CALCULATION OF POTENTIAL DIFFERENCES FOR DIFFERENT
CONFIGURATIONS
For continuous charge distributions, Consider a general system composed of point
charges ql, g2, q3 linear charge with density pL coulomb /m, surface charge with density ps
coulomb /m* and volume charge distribution with pv coulomb /m’. The potential at any point is
then given by summation of contribution of each of the above.
Potential at p due to point charges Q1, Q2, Q3 is given by,
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1. Static Electric Field

Vp = ; g + Q + g
40 | rl r2 r3

-1 gon

40 v N

r1..-"f
¥
&
# -
# -
[ -3, SR - Y
Ongin L 25N
r ..-"h""-._
n ~ . R,
Qn

Fig.1.42. Potential due to several points
Potential at p due to line charge of density pL , differential length dL is given by

Fig.1.43. Potential due to line
VL = _1 J‘ﬁ dL
4me0 ¥ r
Potential at p due to surface charge of density ps, differential surface dS is given by

Fig.1.44 Potential due to surface

_ 1 oy
Ve 4me0 JI B as
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1. Static Electric Field

Potential at is p due to volume charge of density pv, differential volume dV is given by

Fig.1.45 Potential due to volume

_ 1 ov
oo gl

By principle of superstition
Total Electric Potential is sum of all the potential due to point, line, surface and
volume charge.

v-L [z %JP_Ld“nﬁdeMq

n=1 N r v
Potential differance - i _i Bedl
-]
g::g:le polejlﬁal due to point Via = Z%R Vv
mzw pota:ntial due 1o line Vu*j. %"%lév
m:te potential due to surface , _ £ %S’R v

Absolute potential due to volume Vi =J‘ l;v av’
v

charge mER
If the reference is other than .9
infinity Va=TRtCV

In all the expressions, R is the distance of point A from the charge Q
or differential charge dQ.
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1. Static Electric Field

1.16. ELECTRIC DIPOLE
An electric dipole is two equal and opposite charges separated by small distance.

A

(a)

Figl.46. An electric dipole.
Consider a dipole with 6 and - 6 Let point p be at a distance rl, and r2 from + 6 and -6
and r from origin. The potential at p is zero when +0 and -0 are superposed. So r1=0.
But as r1 # r2, the potential be non zero being the sum of the contribution by the two
charges taken separately.

Potential at p due to +6=__ ¢ Potential at p due to -6=_ -0
47207, 4720r,

Resultant Potential at p is

\ = L[L_L]
4720

To find value of r; and r,

To distant
point P

(b)

0 /{ R =dcost

Figl.47. An electric dipole to distant point P.

I, =1- i Cos 0
2
L, =r+ i Cos @
2
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1. Static Electric Field

V= 0 1 1

r—gcosﬁ r+icos0
2 2

) dcos@
4720 r—gcose r+£cos9
2 2

:& |:dcozs¢9:| as r >>§ Cos @

4720 r
y = 9d Cos 7]
A7e0r?

Where p - Dipole moment = Qd.
1.17. ELECTROSTATIC ENERGY AND ENERGY DENSITY

To determine the energy present in an assembly of charges, first determine the amount
of work necessary to assemble them. Suppose to position three point charges Q;, O, and Q; in
an initially empty space shown shaded in Figure. No work is required to transfer Q; from
infinity to P/ because the space is initially charge free and there is no electric field. The work
done in transferring O, from infinity to P, is equal to the product of Q, and the potential V,, at
P, due to Q;. Similarly, the work done in positioning Q3 at P;is equal to O3(V3, + V1), where
V;,and V3, are the potentials at P; due to O, and Q; respectively. Hence the total work done in
positioning the three charges is

Figure 1.48 Assembling of charges.
We =Wy + W, + W;,
= 0+ QVo1 +Q3(V3z + V31)
Where V,; is the potential at P, due to Q3, Vi, and Vy; are, respectively, the potentials at P; due
to Q,and Q;. Adding gives
2Wg = Q1(Viz + Viz) + Qu(Vy + Vaz) + Q3(Vzy + V3y)
= UV + Q12 + Q313

where Vi, V,, and Vj; are total potentials at P;. P,, and Ps, respectively. In general, if there are n
point charges,
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1. Static Electric Field

n
1
WE = EZ QrV, (injoules)
k=1

If, instead of point charges, the region has a continuous charge distribution, the summation
becomes integration;

1
WE = Ejpl Vdl (line charge)

WE

1
EJ ps V dS (surface charge)

1
WE = E_f py V dv (volume charge)

Since pv =V ¢ D,
1
Wy = EJ‘(V- D)V dv

But for any vector A and scalar V, the identity

VeVA=A+VV+V(VeA)
or

(VeA)V=V+VA-A-VV
holds. Applying the identity we get

Wg = —(V e VD)dv (D o VV)dv
1 1
Wrg =§J‘(VOVD)dv—§J‘(D e V1) AV

By applying divergence theorem to the first term on the right-hand side of this equation, we

Have
1

Wp = s (VD) « dS — %gﬁ, (D » VV)dV
W =6, (D » VV)dV = [(D «E)dV
and since E=-VV and D = €oE
W =§I(D oE)dV=%stE2dv

From this, define electrostatic energy density W, (in J/m’) as

o We 1 1, D
e A L Lt s
WEZIWE av
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1. Static Electric Field

PROBLEMS
Example:1.1
Find the gradient of the following scalar fields:
(a) V=¢e “sin2xcoshy
(b) U= ,ozz cos 2¢
(c) W= 10rsin” 6 cos ¢

Solution:

av aV oV
VW=—a +—a,+—
®) ax dy 7 9z e
= 2¢ “cos 2xcosh ya, + ¢ “sin 2xsinh ya, — ¢ “sin 2xcosh y a,

aU 1 oU aU

H YU, gt a8
®) ap p ag 0 e
= 2pzcos 2¢ a, — 2pzsin2d a, + o’cos 2¢ a,
aw 1 oW 1 oW
VW="Ta +——a,+
LR L ar T T 0™ reing quaq"

= 10 sin> 6 cos ¢ a, + 10 sin 26 cos ¢ a;, — 10 sin 6 sin ¢ a,

Example:1.2
Calculate the volume of a sphere of radius R using integration.

Solution : The differential volume of a sphere is,
dv = r?sinfBdrdf do
The limils for r are 0 to R, as sphere is of radius R.

The 6 varies from 0 to © while ¢ varies from 0 to 27
Znn R
v = I I I resinfdrdf do

o oo

Inn I‘?' R R'lz“
= J' J' [T:| sin 6 do r:ld:——J- [-cosB]7 do
0o

i

'R 3
= T[ cos 1t (- cos 0) ] j dg = [-{ 1)-(-1)]e:"
3
= %xzxin ==k R?
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1. Static Electric Field

Example 1.3:
Calculate the surface area of a sphere of radius R, by integration.

Solution : Consider the differential surface area normal to the r direction which is,
dS, = risin® do d¢
MNow the limits of ¢ are 0 to 2w while 0 varies from 0 to m

Inrx
[ [ r2sinb dodg
0

But note that radius of sphere is constant, given as r=R

5,

it n
S, = R*[ [ sin0 db do=R*[-cos0]] [6]3"
o i

il

R? x[-cosm~(-cos0)|x2n=R*[(-1)~(-1)]2n = 4= R?
Examplel.4:

Use spherical coordinates and integrate to find the area of the region
O£ < on the spherical shell of radius a. What is the area if o =2n ?

Solution : Consider the spherical shell of radius a hence r=a is constant.

Consider differential surface area normal to r direction which is radially outward.
dS, = r*sinBdodo=a’sin0dBdo ..asr=a
But ¢ is varying between 0 to « while for spherical shell 8 varies from 0 to n.

i
a"_[
b

= g2 -[—L‘nsn-(—cm{})]u=232u

Sy

sinh dod¢ = ﬂz[—mﬁﬂ']: [o]o

o —

So area of the region is 2 a’a.

If & =2n, the area of the region becomes 4ma?, as the shell becomes complete sphere
of radius a when ¢ varies from 0 to 2x.
Tips: Distances in all Co-ordinate Systems
Consider two points A and B with the position vectors as,
A=x1d, +y, i,+z, 3, and B=x,d, +y, a,+2,3,
then the distance d between the two points in all the three co-ordinate systems are

given by, :
d= -J(X: -5 +(v2 —yl)l +(22=2;)° ... Cartesian
d= ‘frf +12 =21y 1y cos(0g =0 )+ (2, -2 ) ... Cylindrical
d=rf+rf—2r rycos0, cosB, —2 1 r, 5ind, sin B, cos(p, -9, ) ... Spherical
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1. Static Electric Field
Examplel.5:

Three point charges —1 nC, 4 nC, and 3 nC are located at (0, 0, 0), (0,0, 1), and (1, 0, 0),
respectively. Find the energy in the system.

Solution:
W o W] + Wz + w*j
=0+ 0,Vy + Qa(V5 + Vi)

o )

=2 4rs, (0,0, 1) — (0,0,0)|
05 f___Q_l___+4Qz___]
dre, | (1,0.0) — 00.0)]  1(1,0,0) — 0.0,1)]

Y QzQa)
= (Q:Qz + 0,05 + s

1 12) i
=——(—-4-3+—=]:10
i IO“’( V2

T 36w
= 9(—13 - 7) n] = 13.37n]

V2

Example 1.6:
Give the cartesian co-ordinates of the vector field H =20@, —10@,+ 37, at point P(x=5,y=2,z=-1).
Solution : The given vector is in cylindrical system.

H, = H.3, =203, +3,-10d,+3,+33,+3,

20 cos §—10(-sin ¢) +0

AtpointP, x=5 y=2 and z=-1

Now ¢ = tan"! %=tm"-5%=21,3014°
cos ¢ = 09284 and sin¢ = 03714
H, = 20%(0.9284)+10x03714 = 22.282
Then H, = Heay =203, 43, -103,¢3,+33, 3,

= 20sin¢-10cos¢+0
= 20%(0.3714)-10%(0.9284) = - 1.856
And H, = Hed,=20d,+3,-103,+7,+33, .3,
= Wx0-10x0+3x1=3
22282 a, ~1.856d, 4+ 34, in cartesian system.

=l
1
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1. Static Electric Field

Examplel.7:
Transform the vector field W =10@, — 8@, +64, to cylindrical co-ordinate system, at point P(10,-8,6).
Solution : From the given field W, ?
W, =10, W, =-8 and W, =6

Now W, = W.z, =[10a, -8a, +63,] 3,
= 10a,+a, -83,+3, +6a,+17,
= 10 (cos )-8 (sin 9) +6(0)

For point P, x =10 and y=-8

}l

® = tan”! = . Relation between cartesian and cylindrical
= tan!| 22 |- 38.6508°
10
As y is negative and x is positive, ¢ is in fourth quadrant. Hence ¢ calculated is
correcl.
cosgp = 07808 and sing=- 06246
W, = 10%(0.7808)-8x (- 0.6246)=12.804
Now W, = Wea,=10a,+a,-83, +a,+63,+3,
= 10(-sin¢)-8Bcosg+0=10
And W, = Wi, =104, +3, ~83, +3, +63, +3,
= 10x0-8x0+6x1=8
W = 128043, +6a, in cylindrical system.

Examplel.8:
A uniform line charge, fufinite in extent with py. = 20 nC/m lies along the z axis. Find the E at (6,8,3) m

T

Solution : The line charge is shown in the Fig,
Any point on the line is (0.0,2). R
. o = ' 2 Lifm
P = (6-0)a, +(8-0)a, A
_ F b6a,+83, 6a,+83, e
df & == _— 3
ol el 10
= (ba, +08 a, Key Point: As line charge is along = axis, E can not
Thes;: . Ee= aPE' i, an{*_ any mm_uu.m'm uqung z lfll‘t‘l'i.‘lliﬂfi. So do not
Anegr consider z co-ordinate while calculating T
20x10* S B s = =
= [063, +08 3y ]=1078532, +1438 3, V/m
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1. Static Electric Field

Example 1.9:
Obtain the spherical coordinates of 10 @, at the point P(x=-3,y=2,z=4).
Solution : Given vector is in cartesian system say F=103,.
Then E = F.u3, =104, +3,
= 10sin0 cos ¢
AtpointP, x=-3, y=2, z=4
Using the relationship between cartesian and spherical,

x=rsinBcosd y=rsinBsing z=rcosh
= '11-_- ']i=_
¢ = tan - tan 3 33.69°

But x is negative and y is positive hence ¢ must be between +90° and +180°. S0 add
180° to the ¢ to get correct ¢,

¢ = - 33.69°+180° =+ 146.31°
cos ¢ = =-0832 and sin ¢ = 0.5547
And 6 = cos! Zmcost — 2
r I{xz +yi+z?
A 4 .
= CO0S8 =-1-20311

(=31 +(2) +(4)?
cosB = 07428 and sin @ = 0.6695

F, = 10x0.6695% (- 0.832) = - 5.5702
F, = Fedy=10a, «a,=10cosf cosd
= 10x0.7428 % (- 0.832) = - 6.18
F, = Fod,=10a, »a, =10(-sin¢)
= 10x(-0.5547) = - 5.547
F = -55702a, - 6183, - 55473, in spherical system.

Dot operator * a, a, a,
a, cosé ~sing 0
a, sing cosd 0
3 0 0 1
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1. Static Electric Field

Example 1.10:
Given point P(—2, 6, 3) and vector A = ya, + (x + z)a,, express P and A in cylindrical
and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical
systems.
Solution:
Atpoint P: x = =2,y = 6,z = 3. Hence,

p=Vx+y =V4a+36=632
6
s tan_li = tan~! — = 108.43°

=3

r=V¥ 4y +22=V4+36+9=7
L VR +y? _I\/;I—U
— % = tan
z

— = 64.62°
3

# = tan

Thus,
P(—2,6,3) = P(6.32, 108.43°, 3) = P(7, 64.62°, 108.43°)
In the Cartesian system, A at P is
A = 6a, + a,
For vector A, A, = y, A, = x + z, A, = 0. Hence, in the cylindrical system

Ay —sing cos¢p O||lx+z
A, 0 0o 1]l o

A, =ycos¢ + (x + z)sin¢

| rrE———

A, { cos¢p sing 0 y

Ag = —ysing + (x + z)cos ¢
A, =0
Butx = pcos ¢,y = p sin ¢, and substituting these yields

A=(A,A,A)=Ipcos¢sing + (pcos¢ + z)sind]a,
+ [ — psin’d + (pcos ¢ + z) cos play

AtP
p= VA, uns=2
cosd:—-i smqfa—L
Va0 40
-2 6 =2 6
A={\/¢5-———-—+(\/zﬁ —+3)-——}
40 V40 40 Vaol®
- -2
+{—\/4_0-E+(\/21—0 —2+3)-—-—-]a¢,
40 40 40
-6 38
= \/Zéa, \/_a¢= —0.9487a, — 6.008a,
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1. Static Electric Field

A, sinfcos¢ sinfsing cosd y
Ag | = | cosflcosg cosfsing —sinf [[x+ 2
Ay —sin ¢ cos ¢ 0 0

A, = ysinfcos¢ + (x + z)sin O sin ¢
Ay = ycosfcos ¢ + (x + z)cos fsin ¢
Ay = —ysing + (x + z)cos ¢
But x = rsinf cos ¢, y = rsin @ sin ¢, and z = r cos §. Substituting these yields

A =(A,ApAy)
= r[sin’ 0 cos ¢ sin & + (sin @ cos & + cos ) sin § sin ¢]a,
+ r|sin  cos @ sin ¢ cos ¢ + (sin f cos ¢ + cos #) cos 8 sin dla,
+ r[—sinf sin’ ¢ + (sin § cos ¢ + cos ) cos @la,

AtP r=171, tan¢="_6—2. lan&=r-¥
2 6 3 V40
cos ¢ = \/AIE} smtp—%, cosﬂﬂ? smﬁ'-——?——
P [_Q = T (\@iﬁ)@_w
9 Vao Vao T\ Vo "7 T Vaol®
[f_ 3.6 2 +(_\/£0_.;2_+__3_).§_ 6 ]
77\/0\/40 Vao 1/ 7 Vaol”
+?{ 2—6 (f——}:iﬁ-i)—_i_}a
7 Vaol™
T8 38
B o - ?\/20 T Vao
= —0.8571a, — 0.4066a, — 6.008a,
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1. Static Electric Field

Example: 1.11:
Determine the divergence of these vector fields:

(@) P =x’za, +xza,
(b) Q=psinda, + p*za, + zcos pa,
|
(c) Tz:gcosﬂar+rsinﬁcos¢ao+cosﬂa¢
Solution:
(a) V- P——~P_ +—P +——P
dy '
6 5 .8 d
=—(x%y +—U + —(xz
3y £ %) Ei_y( ) = (x2)
d

1 4 1 d
(b) V'Q—;a—p(pr)"'E—;Qa"'—Q:

1 a8 1
:Eaip{pzsintp) —d—¢fﬂ %) +_‘(?°03¢)
= 2sin ¢ + cos ¢
o

1 d 1 |
T T e e (8 Ea e — 1]
© v r? ar(r T+ rsin @ 00 {TQ R+ rsin @ a¢(T¢)

1 @ 1 a 1 d
m'ga—r(cmﬁ) ——3%(rsm 0 cos ¢) + —Br?—qﬁ (cos 0)

=0+

2rsin@cosfcosg + 0
r s

=2cosfcos ¢

Example: 1.12
Given W = x°y* + xyz, compute VW and the direction derivative dW/dl in the direction

3a, + 4a, + 12a,at (2, —1,0).

aw a w aw
Solution: VW= a+—a,+—
ax ¢ 3 y = 0z

= (207 + y2)a, + (2% + x2)a, + (x)a,
At(2,—1,0): VW = 4a, — 83,, —2a,

a,

Hence,
aw _ L B4 u
4l =VW-a,=(4,-8 -2) 3 3
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1. Static Electric Field

Example: 1.13
Determine the divergence of these vector fields:
(a) P=x"za, +xza

(b) Q= psinga, +p'za, +zcosda.

|
c) T= j::u:iﬁfa, + rsinficos ¢ ay + cos B a,

Solution:
il i 0
V:P=—P +—P + —P.
(a) P a.xP‘ Hy’+fi.:F‘
H(‘;+F’:m¢ﬁin
=—{x"yz b— —
ax ¥ dy az
= Quyy + x
1 a 1 & i
b) V:Q=—— +—=—0, + —0.
(b} Q ﬂﬂptpgﬂ} Pﬂ'qﬁQd ﬂ:Q"
1

(07 sin ¢) + =~ (p%2) + ~= (2 cos §)
pap " pag " e

= 2sind + cos g
L3

1 a4 1 i
V' T=——(rT)+ ———(Tsind) + T.
© re Hr{r T r:;'lnﬁ'ﬂﬁ{ ¢ BRL) rsin f ﬂ-:tr{ ¢
1 d 1 i L | il
= — —(cos ) + —(rsin“fcosg) + ———(cos @
3 ﬁ”F{m*«- ] ”.mgwirﬂm COs @) rsin6 96 {cos &)

1
—2rsinficosfcosg + 0
rsin

= 2cosfcos @

-—.-[!-}-

Example: 1.14
Convert the point P(3, 4, 5) from cartesian to spherical co-ordinates.
Solution : x =3, y=4,2=5

r = xd+y?ez? = 32447452 = 071

R T | —1[_51..}45*
Cos [ r—.x2+}rz+zl} cos Jm
¢ = tan' L = fan-t -'% = 53.1%°
~ (7071, 457, 53.13°)
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1. Static Electric Field

Example: 1.15

Point charges 1| mC and —2 mC are located at (3, 2, — 1) and (—1, — 1, 4), respectively.
Calculate the electric force on a 10-nC charge located at (0, 3, 1) and the electric field in-
tensity at that point,

Solution:
F = E L@{__‘an _ Q0(r - I'Jz.'r1
§572 dwe kT §5T2 dwe,lr —
_ 0 {:n‘a[m.s,n—{s,z,-nj _2.]{}"1’I{ﬂ.3,]}—l’—l.—l.ﬂ}
4me, | (0,3, 1) — (3.2, =D 0.3, 1) — (-1, -1, 4)°
_ 107104107 (=3.,2)  2(,4,-3) ]
1077 O+1+4" (1+16+9"
g+ ——
Aow :
— 2 Sy
= .ﬂ—:r_-’*- L2) (=2 3-_6?J
14V 14 26V 26
F = —6.507a, — 3.817a, + 7.506a, mN
Al that point,
F
E=—
o
: 1073
= (—6.507, —3.817, 7.506) - ———
10+ 10
E = —650.7a, — 381.7a, + 730.6a. kV/im

Example: 1.16
If the point B is at (= 2, 3, 3) in the above example, obtain the potential
difference between the points A and B.
Solution : Vag = Va—-Vg

where V) and Vjp are the absolute potentials of A and B.

Now Vo = 3595V ... as calculated earlier.

__Q i di

Vi = Treis where Ry is distance between point
Band Q (2 3,3)
Re = (-2-2)2+(3-3)2+(3=3)? =4
0.4x10*

= =0.8987 V
Vo = Gex88Ix10 x4
Vap = Vi -Vp =3595- 08987 = 2.6962 V
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1. Static Electric Field

Example: 1.17

Two point charges —4 uC and 5 pC are located at (2, —1, 3) and (0, 4, —2), respectively.
Find the potential at (1, 0, 1) assuming zero potential at infinity.

Solution:
Let

0, = =4 uC, 0, =5uC
0, 0,

Vir) = +
) drer — )| dwe,ir — 1|

¥+ €y

If V() = 0,C, =0,
P-rl =10 - @13 = [(-1,1,-2)] = V6
r -5l = [(L,0,1) - (0.4, =2)] = |1, ~4,3)| = V26

Hence

10°° -4 5
V1,0, 1) :4)10—7’[ }

—+—

i Ve V26
T X —
367

=09 X 10° (—1.633 + 0.9806)
= —5872kV

Example: 1.18
Two dipoles with dipole moments —35a.nC/m and 9a.nC/m are located at points
(0,0, —2) and (0, 0, 3), respectively. Find the potential at the origin.

Solution:
2 P T
%" Nk
v —_— L5, ol |
¢Z1 dwe
1 - I
- [Pi P p: ' z]
dre, " ra
where

P = —Sa;, rIZ(O.O.O)“(U.U, _2J=23:, Ty = r|| =2

p. = 9a,, r,=(0,00)- (003 =3, rn==3
Hence,
V=—]_' _10_:21 -10°°
w®L2 3
i 36w
= —=2025V
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1. Static Electric Field

Example: 1.19
Express vector B in cartesian and cylindrical systems. Ciwn,ﬁ=!r!3,+fcosel.+3.
Then find B at (- 3,4, 0) end (5, §2. - 2)

Solution : B = ?i +reosBiy +3,
10
B'=-;-, By =rcos@ B, =1

sinOsing mOmo
cosB - sin

iy

B, = l-ounemto rcos’0 sind+ cosd

B, = ?mﬂ- rsin 0cos0

z
But r= leylezl, csb= - =

X4y +2

okl SINQ= ———ee 5

Using equations (1), (2) and (3), B in cartesian system is :

tang= Y

sinf =

B = B,a,+B,a +B,a, where,
B = 10 x P, xz? Yy

* ey ez JoE+y) 4yt +27) Jx+y?
T yz! e B
Tooxteyie2 oyl (P eyiezd) x4yl
§ 102 zfx? +y?

z =

x’-l-y’-l-z’ ,Jx!-pyz-pz:

At(-3,4,0), x=-3, )’=4l z=0

B = -2a,+a,

For transforming spherical to cylindrical use,

MR

108m8+rm39

P = S]I'IaB “'CGGB‘ =

1.51 Electromagnetic Fields
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B, =1

. = cos B, -sin0B, = 2

1. Static Electric Field

—rsinBcos@

Now p = rsin® z=rcosB ¢=¢ r=p?+2%, 0=tan"g
And tan® = £ hence sin@= —2—, cosO= -2
z b+ 22 0?4 22
B = B3, +B,a, +B,a, where,
10p z* 10z pz
B, = g~ —— B, = B, = -
Poptez? preg? o= B pl+2? T2
2 N n n
Algwmpmn!(,-i,—z}p=5,o=i and z=-2
10x5 (-2)?
B, = + =2467, B, =1
P 524 (~2)? J5:+(‘2)2 B
10x (-2) 5% (-2)
B, = = 1.167
L5t (-2t BTa(-2)?
B = 24673, +3,+1.1673,
SUMMARY

whereas V(x, y, z) is a scalar field.

rectangular), the circular cylindrical, and the spherical.

A field is a function that specifies a quantity in space. For example, A(x, y, z) is a vector field

A vector 4 is uniquely specified by its magnitude and a unit vector along it, that is, A = 4aA.
The three common coordinate systems we shall use throughout the text are the Cartesian (or

Cartesian Cylindrical coordinate Spherical co ordinate
coordinate system system system
dl= di= dl=
The Jdx? + dy? + dz% | \[(dp)? + (pde)? + (dz) /(dr)? + (rd8)? + (rsinf
differential
length
The ds;=dxdy(x,yplane) | ds=dpdz (p,z plane) ds=rdrdo (r,0 plane)
differential | ds,=dydz(y,zplane) | ds= pdpd® ( p,® plane) | ds=rsin® d® d (r,® plane)
area ds;=dzdx(zxplane) | g4s= pd®dz (®,zplane) | ds=r’sind d6 dD(,Dplane)
The dv = dxdydz dv = pdpd®dz dv = r’sin dr d0 d®
differential
volume
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1. Static Electric Field

. Multiplying two vectors A and B results in either a scalar A * B = 4B cos Oz 0r a
vector A X B = 4B sin 0 3a,. Multiplying three vectorsA, B, and C) yields a scalar A + (B X C)
oravector A X (B X 0).

. The scalar projection (or component) of vector A, onto B, is Az = A, * az whereas
vector projection of A, onto B is Az = Apas.
. Vector Transformation:

In matrix form, the transformation of vector A from (4x,A4y,Az) to(Ap, AD, Az) as

Ax cos @ sin@ 0] [4p]
Ay| =|—sin®@ cos @ 0| [AD
Az 0 0 11 LAz
The inverse of the transformation (4p, AD, Az) to (4x,Ay,Az)
Ap cos @ —sin® 0][Ax]
AdD| = |sin®@ cos®@ O0f|Ay
Az 0 0 11 1Azl
In matrix form, the (4x, Ay, Az) — (Ar, A6, A®) vector transformation is performed according
to
Ar sinfcos @ sinfsin®@ cosO | [Ax
AO| = |cosbcos® cosBsin@ —sinb| |Ay
AD —sin® cos @ 0 1lAz

The inverse transformation (Ar, 46, A®D) — (Ax, Ay, Az) is similarly obtained,

Ax sinbcos @ cosOcos® —sind] [Ar
Ay| = |sin€sin®@ cosBsin®@ cos @ | | A6
Az cos@ —sin@ 0 JlAD

In matrix form, the (Ar, A6, A®D) to (Ap,A DAz )vector transformation is performed according to
[Ar] [sin€@ 0 cos@1[Ap]
AB|=[cos® 0 —sinb||AP
ADI L O 1 0 1lLAz]
In matrix form, the (4p,A @ Az)to (Ar, A6, AD) vector transformation is performed according to
[Ap] [sin@ cos@ O][Ar]

Ao|=| 0 0 1{] A6

LAz1 lcos@ —sin6 0lLAD]
. Fixing one space variable defines a surface; fixing two defines a line; fixing three
defines a point.
. The del operator, written V, is the vector differential operator.

i} 9 __ 0
V = &ax+ a—ay+aaz
. ($Hdl

° (curlof H) = VtzAlslNrgo(AsN)
. The volume integral of the divergence of a vector field over a volume is equal to the

surface integral of the normal component of this vector over the surface bounding this volume.

[vAadv = ffA.ds
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1. Static Electric Field

. Stokes's theorem states that the circulation of a vector field A around a (closed) path is
equal to the surface integral of the curl of A over the open surface S bounded by L provided that

A and V X A are continuous S.

fH.dl - [[VxHds

. Coulomb's law states that the force f between two point charges (Q1 and Q2 is):
i.Along the line joining them

ii.Directly proportional to the product Q1Q2of the charges

iii.Inversely proportional to the square of the distance R between them.

iv.Point charge is a hypothetical charge located at a single point in space. It is an idealized

1 0,0,
4me R?

. The electric field intensity (or electric field strength) K is the force per unit charge
when placed in the electric field.

F

E=—

Q

° Point, Line, Surface And Volume Charge Distributions
dQ=pdL »Q=J, p dL (line charge)

dQ=psdS 5Q = fs psdS (surface charge)

dQ=pvdS 5Q= [, p,dV (volume charge)
e The flux due to the electric field E can be calculated using the general definition of flux.
For practical reasons, however, this quantity is not usually considered as the most useful flux in
electrostatics D = €E

__Q
4mR 122
. Gauss's law states that the total electric flux ¥ through any closed surface is equal to
the total charge enclosed by that surface.
V¥ = Qenc
Y= [d¥ =[D.dS
. To move a point charge Q from point 4 to point B in an electric field E as shown in
Figure. From Coulomb's law, the force on Q is F = QF so that the work done in displacing the
charge by d!/ is
. An electric dipole is two equal and opposite charges separated by small distance.
define electrostatic energy density W (in J/m®) as
2
We="2E=2D « E= g E? -
We = [ W dV
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