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UNIT II
ANALYSIS OF CONTINUOUS TIME SIGNALS

INTRODUCTION

The French mathematician Jean Baptiste Joseph Fourier (J.B.J. Fourier) has shown that any periodic
non-sinusoidal signal can be expressed as a linear weighted sum of harmonically related sinusoidal signals.
This leads to a method called Feurier series in which a periodic signal is represented as a function of
frequency.

The Fourier representation of periodic signals has been extended to non-periodic signals by letting
the fundamental period T tend to infinity, and this Fourier method of representing non-periodic signals as
a function of frequency is called Fourier transform. The Fourier represention of signals is also known as
frequency domain representation. In general, the Fourier series representation can be obtained only for
periodic signals, but the Fourier transform technigue can be applied to both periodic and non-periodic
signals to obtain the frequency domain representation of the signals.

The Fourier representation of signals can be used to perform frequency domain analysis of signals,
in which we can study the various frequency components present in the signal, magnitude and phase of
various frequency components. The graphical plots of magnitude and phase as a function of frequency
are also drawn. The plot of magnitude versus frequency is called magnitude spectrum and the plot of
phase versus frequency is called phase spectraun. In general, these plots are called frequency spectrum.

2.1 FOURIER SERIES

Definition of Trigonometric Form of Fourier Series

The trigonametric form of Fourier series of a periodic signal, x(1), with period T is defined as,

X(t) = 5 8, + D a cosnQut + 9 b, sinnQt

1
2

SoX(E) = 9 a, + a, cosQt + a, cos20lt + a, cosIt +

2
+ b, sinfd;t +b,sin20t + bysin30t +

where, Q = 2nF = ZTH = Fundamental frequency in rad/sec

F, = Fundamental frequency in cycles/sec or Hz
nf} = Harmonic frequencies

a.a.b = Fourer coefficients of trigonometric form of Fourier series
Note : 1. Here a, 2 is the value of constant component of the signal x(1). I
m,

2. The Fourier coefficient a_and b_are maximum amplitudes of n* harmonic co

The Fourier coefficients can be evaluated using the following formulae.

«T2 T

a, = % Jx(t)dt (or) 8, = -21;] x(dt e (4.2)
-T2 -

5 12 .1 3

4h = F -!.:(tlcosnﬂol dt (or) 8 =3 ! X(1) cosnQgtdt e (4.3)
T2 .

b= 3 [ X0 sinnQtas o b= % [xsionQudt (4.4)
-T2 A

In the above formulae, the limits of integration are either ~T/2to +T/2 or 0to T. In general,
the limit of integration is one period of the signal and so the limits can be from ¢, to t +T, wheret, is
any time instant.
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Conditions for Existence of Fourier Series

The Fourier series exists only if the following Dirichlet’s conditions are satisfied.

1. The signal x(t) is well defined and single valued, except possibly at a finite number of points.
2. The signal x(1) must possess only a finite number of discontinuities in the period T.

3. The signal must have a finite number of positive and negative maxima in the period T.

Note : I. The value of signal x(1) at t = t_is x{t ) if t =t is a point of continuity.

2. The value of signal x(t) at t = t is w ift =t is a point of discontinuity.

2.1.1 Exponential Form of Fourier Series
Definition of Exponential Form of Fourler Series
The exponential form of Fourier series of a periodic signal x(t) with period T is defined as,

x(t) = i c, el

n==m

where, Q = 2aF = ETY—' = Fundamental frequency in rad/sec

F¢= Fundamental frequency in cycles/sec or Hz
+ nf) = Harmonic frequencies
¢, = Fourier coefficients of exponential form of Fourier series.
The Fourier coefficient ¢_can be evaluated using the following equation.

+T1i2 T
- { - in1gh i | ~ il
c, = T ';[‘x(l)c dt (or) ¢, = T "[ x(t) e dt
In equation (4.10), the limits of integration are either —T/2 t0 +T/2 or 0to T. In general, the limit
of integration is one period of the signal and so the limits can be from t tot+ T whcrctd is any time
instant.

2.1.2  Relation Between Fourier Coefficients of Trigonometric and Exponential Form
The relation between Fourier coefficients of trigonometric form and exponential form are given

¢, = (8, —jb,) forn=1,234,...

c. = 3(a,+jb,) for -n=-1,-2,-3, 4, ...

1 3
5 eal = 3 \llﬂi + bl for all values of n, except when n = 0.

2.1.3 Frequency Spectrum or Line Spectrum) of Periodic Continuous Time Signals
Let x(1) be a periodic continuous time signal. Now, exponential form of Fourier series of x(t) is,
x(1) = Z ¢, eFfe

A= -

where, ¢_is the Fourier coefficient of n harmonic component.

The Fourier coefficient, ¢ is a complex quantity and so it can be expressed in the polar form as
shown below.
e, = [c,] Ze,
where, [ | = Magnitude of ¢ ; Ze =Phaseofc
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The term, [c | represents the magnitude of n® harmonic component and the term £c_represents
the phase of the n* harmonic component.

The plot of harmonic magnitude / phase of a signal versus "n" (or harmonic frequency n{}) is
called Frequency spectrum for Line spectrum). The plot of harmonic magnitude versus "n" (or n€} ) is
called magnitude (line) spectrum and the plot of harmonic phase versus "n" (or n€}) is called phase
(line) spectrum.

Consider the ramp waveform shown in fig 4.1. The Fourier coefficient ¢ _for this ramp waveform

is given by, (1)
- & = Nivvas
€ ' % T o W/I

(Please refer example 4.12 for derivation of'cn} |o T 2T ;T ot
Let, A = 20, ey = g _ dw Fig 4.1 : Ramp waveform.
2nm nr
Whenn = —3, ¢, = —j;—ﬂ = —jlO61 = 1061 £—90° = 1061 £—x/2
3
Whenn = -2, ¢, = -5519- = —j1.592 = 1592 £-90° = 1592 £ —x/2
m
Whenn = 1, 6 = — (30 = — 5183 = 3.183.£-90° = 3183 £—x/2
T
20
Whenn = 0, ¢, = =5 = 10 = 10 £0
[H]
Whenn= 1, e = jo0 = j3.183 = 3.I183 2+90° = 3183 £x/2
Whenn= 2.6 = j-zl-f'; = j1.592 = 1,592 £+90° = 1592 £x/2
Whenn = 3, ¢; = j;—u = jlLO61 = 1.061 £+90° = 1061 2n/2
n

fig

.

Ie) P

3 -2 -1
|4 I
| I ‘ ‘ |
S | g-- s
Fig

4 2 - 1 =z 3 n

Fig * Magninde spectrum of ramp waveform. ¢ Phase spectrum of ramp waveform,

2.1.4 Fourier Coefficients of Signals With Symmetry
Even Symmetry
Asignal, x(t) is called even signal, if the signal satisfies the condition x({-1) = x{¢).

The waveform of an even periodic signal exhibits symmetry with respect to 1= 0 (i.e., with respect
10 vertical axis) and so the symmetry of a waveform with respeet to 1 = 0 or vertical axis is called even

symmetry.
Examples ol even signals are,
I B
¥l = A cos .QJ
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In order to determine the even symmetry of a waveform, fold the waveform with respect to
vertical axis, After folding, if the waveshape remains same then it is said to have even symmetry.

For even signals the Fourier coefficient a, is optional, a_ exists and b_ are zero. The Fourier
coefficient a, is zero if the average value of one period is equal to zero. For an even signal the Fourier
coefficients are given by,

T2 AT

a, = % |ECES (or) a, = % | %
o ~Ti4
4 18 T4
8, = 3 fx{t)msnﬂutdl (or) a, = T Jx(l} cosnldtdt ;. b, =0
0 ~Ti4
The waveform shown in fig has even symmetry, half wave x(1) R
symmetry and quarter wave symmetry.Hence for this waveform, =
a, =0, b= 20 and a_exists only for odd values of n. Therefore the ; T -
Fourier series consists of odd harmonics of cosine terms. The —— ¥ —
trigonometric Fourier series representation of the waveform of fig 4.4 =_1 =% i =
is given by eqration (4.17). [Please refer example 4.1 for the derivation * -
of Fourier series] Fig
¥ = 4A [ccsnut _ cos30t | cosSQot  cosTQat | cos9Qt }
1 3 5 7
The waveform shown in fig has even symmetry and so x(1)
b, = 0. If the dc component (a,2) is substracted from this waveform —I & I I
then it will have half wave and quarter wave symmetry, and so the — r
Fourier series has odd harmonics of cosine terms. The trigonometric -3 3 % t
Fourier serics representation of the waveform of fig 4.5 is given by Fig
equation (4.18). [Please refer example 4.3 for the derivation of Fourier — =
series] il &
(i) = A ZA [msﬂot _ cos3Qt | cosSQpt  cosTRt | cos9t ]
2 ™ 1 3 5 7 9
The waveform shown in fig has even symmetry and (1)
50 b = 0. The trigonometric Fourier series representation of the L
waveform of fig is given by equation ; 1 .
EENEE

x(1) = 2A de 4A | cos2Qut  cosd0d,t - cos6Ldt  cosBLY,l
@E-) @) @-) @)

The waveform shown in fig. has even symmefry
and so b_= 0. If the dc component (a,/2) is subtracted from
this waveform then it will have half wave and quarter wave
symmetry, and so the Fourier series has odd harmonics of
cosine terms. The Fourier series representation of the
waveform of fig 4.8 is given by equation . [Please
refer example 4.2 for the derivation of Fourier series].

AL [t e ot s, ]

() = — = —

2 =L ¥ ¥ 5 i

The waveform shown in fig. has even x(t)
symmetry and so b, = 0. Il the de component
(a2} is subtracted from this waveform then it will . . ’
have half wave and quarter wave symmetry, and H
s0 the Fourier series has odd harmonics of cosine “F -I |'I r T t
terms. The Fourier series representation of the
waveform of fig is given by equation Fig £.3.

[Please refer example 4.11 for the derivation of
Fourier series|.

xi1) = +

2 m"

A 4;} [cosn,,t L cos3,t | cosSOl,t | cosTOHt }

I'.‘ 33 52 73
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Odd Symmetry
A signal, x(t) is called odd signal if it satisfies the condition x{-#) = —x(1).

The waveform of odd periodic signal will exhibit anti-symmetry with respect to t = 0 (i.e., with
respect to vertical axis) and so the anti-symmetry of a waveform with respect to t =0 or vertical axis is
called odd symmetry.

Exomples of odd signols are,
il =140+ 417
wlf) = A sin 01

In order to determine the odd symmetry of a waveform, invert either the right side (or the left
side) of the waveform with respect to horizontal axis and then fold the waveform with respect to vertical
axis. Afier inverting one half and folding, if the waveshape remains same then it is said to have odd
symmetry.

For odd signals a, and a_are zero and b, exists. For odd signal the Fourier coefficients are given by,
a=0 ; a=0
L1} n
Ti2

_[x(l} sinnQ tdt or b, =
o

=+

I
I x(t) sinnf,t de
“Tid

The waveform shown in fig has odd symmetry, x{l)J
half wave symmetry and quarter wave symmetry. Hence for ==
this waveform, a =0, a_= 0 and b_ exists only for odd values of I
n. Therefore the Fourier series consists of odd harmonies of = L t
sine terms. The trigonometric Fourier series representation of ==
the waveform of fig is given by equation [Please

e B Fig T
refer example 4.5 for derivation of Fourier series].

i 4TA [sinﬂut & smia;ﬂ,,l L SinSOGU osin7Qpt ]

5 7

The waveform shown in fig has odd symmetry, half wave symmetry and quarter wave
symmetry. Henee for this waveform, a = 0, a = 0 and b, exists only for odd values of n. Therefore the
Fourier series consists of odd harmonics of sine terms. The trigonometric Fourier series representation

of the waveform of fig is given by equation .. [Please refer example 4.6 for derivation of
Fourier series]. ®
X

Aree T
NG INZ AN
v T
=1
Fig 4.11.
X(1) = % sinfdgt Smlf'lnt i :iinSf}nl - 51n?zﬂnl g = ]
- b3 1 3 5 7 S
The waveform shown in fig has odd symmeiry and so a, =0, a_ =0, and b_ exists for all
values of n. Hence the Fourier series has both even and odd harmonics of sine terms. The trigonometric
Fourier series representation of the waveform of fig is given by eguation . [Please refer

example for derivation of Fourier series].

X(t) = 2 ]::;»in:?ot :iinZ"Dul < .-,-in:;'n[;. sin.:not L S5t }
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The waveform shown in fig is neither even nor odd. But x(t)
it can be shown that if the dc component (a,/2) is subtracted from
this waveform it becomes odd signal. Hence the Fourier coefficients
a, = 0 and b, exists for all values of n. Therefore the Fourier series
has a dc component and all harmonics (both even and odd harmonics)
of sine terms, The trigonometric Fourier series representation of the

A

waveform of fig4.13 is given by equation . [Please refer example =
4.8 for derivation of Fourier series]. £, = T
A A | sinf,t sin20,t sin 3005t sind0t sin 502t
) = — - — + ——0 p 0 0 4 0 4
M= = [ 1 i 3 T 4 hoe—g e (4.26)

2.1.5 Properties of Exponential Form of Fourier Series Coefficients

[ Note : ¢ and d_are exponential form of Fourier series coefficients of x(1) and y(1) respectively. |

PI’DPEI-'t}' Continuous tirme Fourier series
periodic signal coefficients
Linearity A xit)+ B y(t) Ac +Bd
Time shifting xi-t) c, e %o
Frequency shifting Rt (3 Gnce.
Conjugation x(t) el
Time reversal x(=1) .
Time scaling x(at) ; x>0 c,
(x(t) is period with period T/a) [(No change in Fourier coefficient)
Multiplication x(t) y(0) IR .
s i
d
Differentiation @ x(1) jnQ,c,
; [ xwa o
Integration i o,
I:Finih‘vuluedandpuiodiconlyifahﬂj
Periodic convolution L x(1) y(t—1) dr Ted
Cn =~ c:n
. ; lenl = lecpl : Lep= —Ze_p
Symmetry of real signals x(t) is real Refcn) = Refcp}
]mICn} ey [m{c_u}
Real and even x(t) is real and even c, are real and even
Real and odd x(t) is real and odd ¢, are imaginary and odd

Parseval's relation Hverage power, P of x(t) is defined as, | The average power, P in terms
1 . of Fourier series coeflicients is,
B J’T x(0)f dt et

pa Yl

A= -

% L Ix(F dt = .g',lc"':
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Example 4.1

Detarmine the trigonometric form of Fourier series of the
waveform showninfig4.1.1.

com

(i

-

T T
Solution - |- I '
The waveform shawn in lig 4.1.1 has aven symmaetry, ! "..I;
half wave symmetry and quarier wave symmetry. T f
4 'f T 7
"8 =0 b =0and g = I)qumsnnnidl
& Fig4.1.1
The mathematical equation of the square wave is,
ty=A ; for t=0 In%
; oL I
==A: for L= 3 to 3
Evaluation ofa,
4 e 4 TIa 4 Tiz
8, = [xtcosnagtat = = [Acosnatdt « = [ (-A)cosnagtat
T T T
@ a Ti&
o= Tid . on TiE
B ﬂ[shthI" ) ﬂ[sh‘lnﬂ,t]:u _ 4 sinn =t _4A .-.nn?-l %
T | niy T ny |, T nE_}'_:_ T n<® = T
T T
2z T 2n T 2x T
_aa ™ "?1] sno|  4A “‘[“?z] B =2
T 2 =TT &= ax
n T n T 1] T n T
4A [ T nn 4A | T nn
—_— | — sin— - nn = —— SiN— (5in0=0|
i T u} T[Zﬂ: 2]
28 nx 2A  nm 4A nr sinna=0
= — gin— + — sin— — sin—
nn » nr Z  m 2 for integer n

For even values of n, am%ﬁ = 0

For odd values of n, slnn?‘

=1

.8 =0 ; toreven values of n
a, = ﬂahﬂ i tor odd values of n
nr 2
AR, . (0 . .. 1
wd 1==n 2 k4
a, = da) Ena_n = .—iﬂ.
4 I3xm 2 3r
4A . Brn 4A
Bg = Sin— = +—
Sxn 2 Sn
4A . Tr 4A
By oA = = and so on.

Thea trigonomatree form of Fourier serriaes ol x{1) s,
(1) = + 3 a;cosndigt + 3 b, sinngagt
o= T o=

Bo

Hara, a, =0.b_=0anda_exisisocnly for odd values of n.

Sy =

L ]

48

oA = 448
o L3t — — cos3flt — OS54 1 —
= = Cosil, o It + = Lo,

B i"ﬁ[cnan.t =

7. 8, cosnflgt

COS 32,1

= &, COSLX,1 + 8, COoS3EI N + 8 cosSlll + a, cosTI,t + ...

AR coSTIHT 4 ..

COsTLIN

*+ in

]

‘GOG:{I,I#

3 T
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Example
Find the Fourier series of the waveform shown in fig
Solution =T =T T T
The given waveform has even symmetry and sob, =0
4 TE 4 T2
By = = _!'x{udt PEm !:ﬂt:cosnﬂ,tdl i b, =0
Tao Find Mathematical Equation for x{1)
Consider the equation of straight line, L— Y1 - X =%
| [ ' X = Xy
Here, y=x{t), x=L
X(t) — ) -1t
.. The equation of straight ling can be written as, =
i M) xl) L4 (M
Consider points P and Q, as showninfig 1, x(1)
Coordinates of point-P = 1, %{t,)] = [0, 0]
- . T Y -
Coordinales of point-Q =[t,, x(1,}] = [E' A]
B
On subslituling the coordinates o points P and @ in equation (1) we get, "I T
x(t) - O t-0 wt) - 24 Fig 1
= - 2l o= =24 g I
0-4 -1 AT M=
2
oKty = -z-_rﬁl | fort = 0 !.ulzr-
Evaluation of L
a4 i a4 TiZF = 84 Tr2
e, - — W) Al o= — Elt gt o= t ot
- T -£ T -!- T T = J;
aa [ an [T2
"FE‘[? ”T[?“’]““
Evaluation a
4 Tiz "t Tz 2A EA T2
a == I x(t) cosnfltdt = = ! Tleosntet = o _!'Imsnn,,tdt
£ o T2 w = ufv —|jdu|v
- E_A_ lsh‘lnﬂ;t . I1s-= :smn_lht di -{ u-lI v{[m{ ]t
T2 nl, | ney, | £
2=n 2n e
T
_ BA [1sinngt _ [-cosnmgt) & _BA Lsinnt - cosn<-1 ﬂ;gﬁ
17 | nn, e )| T T a2 4 T
T G i3
Lo E2n T enT
_8A|T SMNyg  CMSNTE 0 sh0  cosO sinD=0
T |2 2= n,‘tnf n2n n,4-,-: cosD =1
T T2 T T
snnz =0
8A | TP T2 T? 2A for Inte:
s ] —— b I = = - ger
f i [-m:: SnAT+ Zne oo 4:!!:5] nn? [k s valugs of n

Far even integer values of n, cosnx =+ 1
Faor odd integer values of n, cosna = =1
a = 0 ; flor even values of n, and

8, = E“'z [cosnz - 1] = L 1 for odd valuas of n.
T

n?a?
48 44 44
S.oay ;_ﬁ . d, :_W H - =—51? T and soan.
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Fourier Series
The trigonometric form of Fourier series of x(t) is,

x(t) = %— + 3 a,cosnft + :‘;b.. sinnt

A=

Here, b =0, anda, exists only for odd values of n.

~oxft) = 22 o Z a_ cosnft

]

2 n = ool

= 32‘-‘- + a,cosf),t + a;cos30,t + a; cosSOt + ...
A 4A 4A 4A

= — - cost — cos30,t — cosS0t — ...
2 ot - 3?57 Qo 577 €
A 4A €0s 30t cos 5(2,t

B o g [t:osﬂot + 3,0“ + 5=n° -

Example 4.3 x(t)

Determing the triganometric form of Fourier seres of the

waveform shown in fig 4.3.1. I—l | r“_l

[

Solution — T
The waveform of fig 4.3.1 has even symmetry. 21 %
i Fig 4.3.1.

TiE

Ix{t]dt H - 4 jxu]cmnr.‘:dlm
-] T o

ral={ |

-

h“ = 0 a; = :E
Tha mathamatical equation of the given periodic ractangular pulsa is,
T

My=A Tmt:ﬂto?

T §
= % | .._.t...
0 ; fert ltu2

Evaluationofa,
4 Tig 4 Tid 4 %id
8=z !:{um = !&uu = [
23 [AI : }= A
T 4
Evaluation of a,
4 Tiz 4 Tid 44 Ehm t Tid
8, = — |xt)cosnQtdt = — | Acos nQgidt = — | —2
T ! T £ T | ny
. on T xT
A smnTI A shmTI sin
T TE| T &
T T
4A T et 2A . nm

For even values of n, :h% =0

For odd values of n, slnn?“ w

. a =0 foravenvaluescln, and
2A . nr

a“-F;mT i for odd values of n.
L. oA X 2A
'a1_1xn lll'lzt=+'t
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Ay = L !h?-’-t-l
3 A xn 2
24 L
= Bin—
s Sxn 2=
ay = 2A ﬂ?—‘:n
T rer 2

and so on.

The trigonomieric form of Fourier series of x(t) is,

% :
Xt} = -21 +§1n, cosnii;t +

Here, I:nﬂ =0and a axists only for odd values of n.

Example 4.4

a -
LoAft) = -29- + n;ﬂ;_mnnﬂt

i by, sinndi

Determine the trigonomatric form of Fourier series of
the full wave rectified sine wave shown in fig 4.4.1.

Solution

The waveform shown in fig 4.4.1 is the output of full
wave rectifier and it has even symmetry.

i3

shy=0 a.,=% jxmm HE 58

2
T a

T

J' (1) cosng,l dt

The mathamatical equation of full wave rectilied oulput s,

#(l) = Asinflgt ; 1'or1=utu% and (g = T

Evaluation of 8

2,

Evaluation of a
— 1)

L]

.4 Tia 4 Tz ‘ﬂ
= tydt = — Asinfltdt s — |-
T !;“” T -! il T

T2

= | TT

2aT

08 ——
T L Wi -
2n

T

22 frcosx + cos0) = 21+ 1 =

- &

ﬁ

T

T2

44
n

2r

Gﬂsﬂgl

a,

cos0
2n

T

Ti2
[ xtt) cosnat at = % | Asint cosniyt o
<] o

T

=)

_I? S, + Al + SNt - A o

2

12?- + B, cos(}t + a, cos30t + a. cos500 + a, cosTOt + ...

A 2A 2A 2A 2A

— + — 050l — — coadlt + — cosSl — — cosTO,! + ...
2 E A 3= A S=x o m %

A 24 cos30,t  cosGOLt  cos7al

= 4+ — |cosfit - -
s el S i

x(1)

:

|25in Acos B =sin{A +B) +sin{A—BT|
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Tid T2
R sin(1 4 )l tat + o _[s'mn - m),tdt
T 1] T o
_2A [-cmﬁ + N} 1]:2 L 2A [-cmt‘l - n}qu_.m
T 0 +nmg TL 0-nng |
= 13 Tz
. E& —cos(1 + n}g—“t " Eﬂ —cos(1 - n}?,_’!i. nﬁ:%
T &n T = 2
I {1 +n].|. (i l'il.r 1
i 2= 7T 22T
a4 | —cos(l + n]-,-rui- cced ap | —cos(l - H}TE cou
=T - o Pl =T Zx
i ﬁ + I'I}—T— :1 + HJ-"_I“_— ﬁ. - ﬂ]"-‘i-_- {1 = I'I} -;'r"
__Acosl +nin i A _ Acos{l —njx m A ”
B (1 +nn {1 +njn (1 = njm 4 = njx

The aquation (1) fora_can be evaluated for all values of n excaptn = 1. Forn=1,a_has lobe eslimated seperately
as showr below.

4 T2 n Tig
&=z !:m cosqlgtdl = = l’Aslnnc,t cost, dt
4 TF sindot 24 7 . -
== ! A=t = = FE sin202,t dt [5in26=2 5inf cosd|
2n T L
_ 2A [-cosar lr’ 2A «cns[a e 2] cos0 |niﬂ= T
= 201 =T 2n 2n
(] 2 x T 2 = 5
= ﬂ[_lmzﬂ_'. l} - E[_L + _-.r_} =
T dn dn T ar 4n
Forvalues af n > 1, the a_are calculated using eguation (1) as shawn below.
_ _Acos(l +njn A _ _Acos{l - nn + A
- 1+ njx {1 +n= (1 = nj= (1 - nj=
When n [s even integer. (1 +n)and (1 = n} will ba odd, seos(1+nm= -1 ; cos{l—nm==1
When n is odd integer, (1 + n) and {1 = n) will be even, soos(+njr= 1 ; cos(l=njn= 1
o8 = 0 ; for odd values ofn
a, = e + i + A + L ; for even values of n
(1 + n)= (1 + n)n 1 - nj= 1 — n)a
e SR 24 _ 2A01 - n) + 2A(1 + ) _ 44
T+ n= - m=x (1 +n) {1 = nj= (1 — n¥)n
I NI, .
TR -2 3n
= oo 48 _ _4A
‘T -4 1Bn
4A 48,
R (= i
4A 4.8
8y = —mm— —-—  and 5o on
l (1 - 8= T
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Fourler Serles
The trigonometric form of Fourier series of x(t) is,

B - -
x(t) = —22 + 3 a,cosnflgt + 3 b, sianfyt

net nei

Here, b,=0, and a_ exists only for even values of n.

o) = 52‘3- + n;ﬂaﬂ cosng),t

= 529- + a,c0s20);t + a, cOS40),1 + a, coSBO! + a, COSBO + ...
2A 4A 4A a4 4A

= —_ - — - — 4 - — - — co8B,t ~ ...
n 3n oy 15n cosan;t 351 —y 63n -

e . ﬂ[cosm,,! , Sos4nt  cosBt  cos8,t ]
n n 3 15 35 B

Example 4.5 x{t)

Determine the Fourier series of the square wave shown in fig 4.5.1.

Solution = T |T [T
The given wavelorm has odd symmelry, hall-wave symmalry El 4
and quarter wave symmetry. -
4 TE Fig 4.5.1.
“8 =0 8,=0 b=z | xtt) sinnaagt et
[
The mathematical equation of the given wavelorm is,
) = A ; fort = nm%
=-A ; fort = % WoT
Evaluation of b,
4 4 4A [-cosngt]™ o= %Tn
b, = = | x(l) sihnQtdt = = | Asinnfltdt = —
T '.E ) e T ju- . T [ nily L cos0=1
2z % 22T
L AR TR Ak | TRMRTS | cesd =ﬁ_Lmn”L}
T HET_ T n:?_’_‘ nf—_’_‘ T 2nm 2nz
T T T
€os nn=-1, for n=odd
cos nn=+1, far m=aven
~by, =0 ; foreven values of n
AAT T T ] 4A
F?[m_ft‘-ﬁ]—ﬁ- for odd values of n
:.h1=% ] n,:% H bs=% and so on.
Fourfer Serles

The trigonometric form of Fourier series of x(1} is,

it} = Eap- -+ i a, cosntl,t + i b, sinnagt

=1 n= 1

Here, a, =0, a6 =0 and b_ exists only for odd values of n.

- =) = E b, simn{a e

n = oo

= by SiN{l,t + by SiN30l.t + by SISt + ...
.8 <5 . =8 3

= == snfigt + o sin3figt + Eﬂ-"m:ﬂ [ -
A8 SENInt sinSCagt ]

- = Imogt S

= = o = + s +
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Example 4.6

Determine the trigonometric form of
Fourier series of the signal shown in fig 4.6.1. /\ a

T
Solution i
The given signal has odd symmelry, hall wave symmetry
and quarter wave srmmutry‘ andsoa,=0,8 =0,
il e Fig 4.6.1.
=7 _[ Xt sinngtdt (o) b, = = _[ x{t) sinng,t ot
=Tid

Note : Hars x{t) is governad by single mathematical equation in the range _; fo:s _'-"_"_ . And so the calculations will

be simple, if the integral limit is -% to +§

To Find Mathematical Equation for x(t)

Consider the equation of straight ine, L — Y1 = X~ %
Y Y: I - I)

Here, y=x{t), x=t
*. Thia equation of straight line can be writtan as, u-u—-M’ = Xty = 2=t 1)
%) = %1z 1= 1
Consider points P and Q, as shown infig 1.

Coordinates of point-P = [, x{t,)] = [—‘—:-. —A}

Coordinates of point-Q = [t,, x({t,})] = [% A]
On substituting the coordinates of points P and Q in equation (1) wa get, s

e :
x(t) - (-A) _ a) _ May+A 'ty
-A - A B e —2A i
4 4 2

I
U B - S My _ 2t 234
2A 2 T°E T CRTY P M
4A T.OT

soxll) = Tl : fort = -?m...I

Evaluationof b

b, = 2 T‘xlt}annﬂﬁldt = = J' i&talnmoldt - 15_ Jtmnnﬂotdt
A ¥ T ™

-TH =Tid
v = ujv - duj }
16A nilt —Cosn ! J [
=T ‘[ ] Jx [—n"‘] } u=1 | v=sinnQt
=Tid
Ti4
2n 2n
4 gosn—t  sinn—t
= 16;4 __lcnsnn,ul + slr;nngl . lﬁ:\ o Tl I2
T ney, i, T T n2_x I'IE 4n
T Tj_ Tid
2rnT 2n T 2«[ T] 2::[ T]
COSN— — SN —— COSM-——| === SMNN—| ==
=1841 T """ T4 , Ta T TL 4 TL 4
7 |74 2= YT S a2
T TE T —I—z
b, = aea Lis cosE 4 e inDT 4 1 L AR g s Brln“
= T 8nm 2 4ncn? 2 Bn= 2 anin?
28 nx 4A nT 2A nw 4A nm
- cos Sin— — oOE— cheurd
= 2 T2 e 2t nEE
= Bm“_ﬂ
n*r*
For odd integer values of n, :!-1:1-‘32E = * 1

N
For ewen integer values of n, sin— = 0
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sby =0 i for even values of n
H% sin%; for odd values of n
R 1:: sbn— %
by = % sh% = —%
8A 5= 8A

bs = == gin— = P
37 52 2 ¥ 525
8A = 8A
& —— 8in— = - and so on.
b7 7E° 2 ;Eni
Fourier Serles
The lﬂuunmalnclurm of Fnuraarsama of %(1} is given by,
xt) = J- + E a, Cosnflt + E b, sinnfagt
-1

Here,a,=0,a =0andb_exisis only for odd values of n.
Lokt = 3 b, sinngt

LT )
=k, s[rlﬂnt + by s.haﬂ,ul + by ahﬁﬂnt + b, BINTOL + .

BA
- — shnut - 32 2 sin30gt + 232 sinSpt - oy y sinTigt + ...

_BA [mn,,t Bmaﬂol sm:f:ﬂt e sh;::ﬁi 3 ]
Example 4.11 x(1)

Determine the exponential form of the Fourier A
series representation of the signal shown in fig 4.11.1. Hence
determine the trigonometric lorm of Fourier series.

Solution R :
To Find Mathematical Equation for x(1) Fig 4.11.1.
Consider the equation of straight line, ;’—-{-’L ;‘-—'{l—
v~ ¥z .
Here, y=x{t), x=L
. The equation of straight line can be written as, —w— X _ =4 )
" ) = xt) -t el
Consider points P, Q and R as shown in fig 1.
Coordinates of point-P = t, x{t)] = [?' u.|
Coordinates of point-Q =[1,, x(L)] = [0, A] uy
T ola
Coordinates of paint-R = L, x(L)] = [.:2__ n] . a
On substituting the coordinates of points P and Q in equation (1) we gat, -E -} t
T y
t+ — Fig 1.
X - 0 _ 2 ) .
U—l’t-i_a = =7 T 1 = «xt A-rT
2
On substituting the coordinates of points Q and R in equation (1) we get,
A -A _ 1-0 a2 _ 2
Nl gl T & TR MEATS
2

47
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X = .
oy = A+ = for t = 2InD
AL T
= A — T v Tor = QWE
Evaluation of c
1 T
c, = — xit) @ ol g
T ~Ti2
1 =T =TId
Whenn = 0, ¢ = — !l[tiu"dtau- Ix{l}{!t
Tz -Tig
1 [ 2») 1 *"“[ zm]
= — A e — |dt + = A = o | dit
T ;L T T -!: T
A. a EA o AT"? zh Tiz
0y = ?_;l::iq- —;_len = _!m-:r-; ot

-ﬁ_.&a.ﬁ_i-z_ﬁ._a-ﬁ.—i ﬁ
T2 4 2 4 2 4 2 2
Evaluation of c,
T2
¢, = X I:mp"‘h'm
T Tr2
17 [ zm} B 1”( }_,,;
= = A+ — e ™lg 4+ — A - ot it
T_Jﬂ T T J;\
. _i'e"""“'dt P jte gy 4 A Ie’“’"'dt B Tle""“‘dl
B T ~Tia T? =Ti2 T ] Ti &

"
==

=g ‘I‘2 =T [v=em™

] e egme]  [ETIRR

T2
_2ate jrézgt o Tt ﬂb='27-n“
A e,
Zaf T 2 T
_ A a? H”r(:] L 2A 0 %o &0 +1'3'ﬁ| a’T[’]
T 2n 2n T 2n Ant 2 2n An
=jn ':I_" -jn T =in T -n" T= =n "-I— -n* T_*_
sl 2=l i
L Ale TE e’ _2A|Te T2 g 112 0 = e e
T | _ ;.28 _jp2n TE |2 2% 5 dn L] 4=
nE - s
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_ A " Aol Sy A ~ Ae™ _ P L _ Aa
2nn j2n= 2n?n< 2nn 2n =" j2n=
A N D Aa ™ !
+ - - - = [} o —
j2n= 2ns 2ncs< 2nt=t
=, A _Ae™ Ae™
ner? 2n ' n” 2on" n?
We know that,
e’ = gcosnm % |sinnx
= 41 £ A =1 ;o foreven n

= —1 £ 0= —1 ; floroddnmn,

s When nis even,

. T A _ F- A S E—

n n!l'.n;.? 2..12“2 312;.[? n!“? r‘lﬂﬁ;?

- When n ks odd,

g B o YA o Ao A o R BR
" e 2 n® 2nfn® n*x® e e

o By = coad = e -, = ﬂ

{—1]!!12 i 1 1=

e 28 i 24 g 2A

'_3}?“2 321‘2 32::2‘

o 28 o _2a B = BA

: (—-5F n* 5% 7 o 5% g

and so an and so on

Exponential Form of Fourier Serles

The exponential form of Fourier series s,

am -1 -
)= Y "™ =Y o™i+ Y g™

Herec axist only for odd values of n.

saym ¥ g e™igs ¥ g

R = BQANE A = poaltve
okl i oo iage

T O R N o L

Nu}:"”_*’%H'Iﬂ!lm_'_%fmm*_%&-nm*_%+%aﬂnl
m E
A e o PR e
4.32“29 *'-‘1+5,‘,?9Hi° S
2A 1 & 1 ¥ s A
=?[....+?e ”'+Femf1—aewj+—2-
+%[1i?aw+%a*“”+;—,a""”‘+ ..... ]
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Trigonomatric Form of Fourler Serles
The trigonomalrnic form of Fourler series can be oblained as shown below,

A ZAT1 . 1 . 1 .
W=+ [? (62 + @) 4 e (eae 4+ g Baer) & (550 + o780 4 }
= % - % [% 2 coslt + fl 2cos301,1 + 5%2{:1955}91 + ]
_ A 4Acosnt | cosdangl | cosSngl s Ere?
= E + ﬂ_= 7 + 7 + 7 A 2
Example 4.12
Datarmine the exponantlal form of the Fourier saries
representation of the signal shown infig 4.12.1, Hence datermine
tha trigonometric form of Fourier serias.
1
Solution Fig 4.12.1.
To Find Mathematical Equation for x(t)
Consider the equation of straight ing, ~—2t = =%
Yi—¥: Xy = X
Here, y=x(l), x=t
. The equation of straight fine can be written as, o — Xl _ L=k 1)

XL - xftsh =1
Consider polnts P and Q, as shown in fig 1.

Coordinates of point-P = [t x(t )] = [0. 0]

Coordinates of paint-Q =t x(L)] = [T, A]

On substituting the coordinates of points P and Q in equation (1) we get,

M -0 _t-0 _ M) _t o A

oA  0-—T A~ T

At
Laty= = 3 tort = Ot0T
x(t) - or o

Evaluationofc,

T
c, = % | xy et g
(1]

1% 3 17
Whann:(l,c,.—-?_!xma dt = F.!;Jt[t:vclt
17 At AT . afeT
-3 fe- A Al
[} o
SR RS P,
TT 2 2
Evaluationofc
= l_T[ x(t) e ™ot = L j[ A groug = A jle"'”“‘dt 1l | idu'l-v]
=T TIT T u=t [v=go""

A i G-muu: j q E-‘-ﬂn! 4 T A [te |t e jrilgt U
= = - » = — i ————
7 | i, —ing2; T Cen, ey

50
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T
A lte AT y A |Te & i e”
prot . -0 =
TP n2E  ede? T3 | a2 .4 2 4n’ ot
T v o S o 5 =7
= = A g k2 A Fan A
n2xn nZdn® nidnt —
= A 4 A y A s A a =m5l.!2.—.-jslnn27r
T T2z T n4x' nfan’ in2x =1—{0=1;forintegern
C, = i & =
. Mo 12“ | - .jz_
C i 0y & ——
o j4= A T
o B —
oy 6= G = 6
and 50 an. and soon,
Exponential Form of Fourier Series

Tha exponential form of Fourier saries is,

x(t) = E‘ g, e = Er‘ [ S E ¢, e
n=1

fs-m T 1
I T B O 0 Sl =M Lo L - LR
A

R L L i g et -""— gt g A _ A o
i6n n i2n 2 2n
A pog A aag
- P e gt
Lk 6r

A P P P A A [afat  gRO R
= — .t + —_—
2z 3 2 1 5 N g T g o
Trigonometric Form of Fourler Saries
The trigonometric form of Fourler serles can be obtained as shown bielow,
! A A |1 el — gt 1( Pt _ g Rt 1{ gP0! _ g POt
xt) = — - = i[ 7 ]«- E[ 2 + -3—[ 2 i
f._[sinnnl , Sn20t  osindog ] . gf - g

z
_A
T2

3 1 2 ]

2.2 FOURIER TRANSFORM

Definition of Fourier Transform

Let, x(t) = Continuous time signal
X(j2) = Fourier transform of x(t)

The Fourier transform of continuous time signal, x(1) is defined as,

XG0 = [xme™ d
Also, X(j€2) is denoted as F|x(t)] where "F" is the symbaol used to denote the Fourier transform
operation.

o Fix) = X = J'xmc'i““ dt cei(4.35)
il 51
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Nate : Sometimes the Fourier transform is expressed as a function af cyclic frequency F, rather than
radian frequency £2. The Fourier transform as a fimction of cyclic frequency F, is defined as,

X(jF)= Ix(!) e ™

—a

2.2.1 Condition for Existence of Fourier Transform
The Fourier transform of x(t) exists if it satisfies the following Dirichlet condition.

1. The x{t) be absolutely integrable.

st

e, j x()dt < @

2, The x(t) should have a finite number of maxima and minima within any finite interval.
3. The x(t) can have a finite number of discontinuities within any interval.

2.2.2 Definition of Inverse Fourier Transform
The inverse Fourier transform of X(j€2) is defined as,

v 4.36)

x(1) = F{X(jQ)} = ﬁ jxum e 40

signals x{t) and X({j€2) are called Fourier transform pair and can be expressed as shown

below,

W === X

Note : When Fourier transform is expressed as a function of cvelic frequency F, the inverse Fourier
transform is defined as,

x)= F{XGF)} = | XGF) e dF

2.2.3 Fourier Transform of Some Important Signals

Fourier Transform of Unit Impulse Signal

The impulse signal is defined as,

@ ; t=0 and jsmm=1
=0 :tz0 -

x(t) = &(t)

By definition of Fourier transform,

X(jo) = jx(l}e""‘ dt = 3'5(:){*“‘&

-

|3{t} exists only for t = Dl

=Ixe'jn'| G=Ine =1
pa

The plot of impulse signal and its magnitude spectrum are shown in fig 4.18 and fig 4.19 respectively.

[XGl  |1XG)| =1
b (1]
x(t) = &(1) 1
= ]
(%]
t Fig 4.19 : Magnitude spectrum of
impulse signal.

Fig 4.18 : Impulse signal.
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Fourier Transform of Single Sided Exponential Signal

The single sided exponential signal is defined as,
x(t) = Ae™ : fortz= 0
By definition of Fourier transform,

o

X(jq) = _[ e d = I A g i gy

-

e I\c—u-m:l i
= A e—h*,ﬂh B | ——
-! {—(a + _1ﬂ}:|‘I

_ | oAaee A __A
—(a +jQ2) —(a +jQ) a+i0

~|F{Ae™ u®)} =

a + jid

The plot of exponential signal and its magnitude spectrum are shown in fig 4.20 and fig 4.21

respectively.
(1)
Al XO=Aetufr)

Fig 4.20: Single sided exponential Fig 4.21 : Magnitude specirum of single
signal, stded exponential signal

Fourier Transform of Double Sided Exponential Signal

The double sided exponential signal is defined as,
x(t) = Ae™ ; for all 1
Lox(t) =A™ (fort= —wtol
=Ae™ :fort=010 +o0
By definition of Fourier transform,

~m

X

il -
j X e g = J' Ae® e gy 4 j Ae™ e g
—n 1]

&) -
J Agltmmn gy J'Ac"‘”'““ dt = [
= it

A gls-ian ) " A glarinn ™
iR | Ha+jQ) |

Ae® A A

a
_ Ae? _ Ae” Ae™
_ At + A - Q) _ 2aA
@ - i) @ + Q) PEE
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. [Fae™) = L. e 4.57)
a® + 0
The plot of double sided exponential signal and its magnitude spectrum are shown in fig 4.22 and
fig 4.23 respectively.
xit) . . 2%
L My=Ac™ X [Xgien)| = ==

¢

Fourier Transform of Signum Function

The signum function is defined as,

xty=sgn(ty)= 1 ; t=0
=_] : t<0

The signum function can be expressed as a sum of two one sided exponential signal and taking
limit "a" tends to 0 as shown below.
. 5 -t ol ]
o sgn(t) .[_..tn [e ult) — e" uf t]]
x() = sgn(t) = Lt [e™ u(t) = e* u(-v)]

By definition of Fourier transform,

X = Ij:x{t] e i gy = ] .l_-;ln [e"' u(t) - ¢* u{-t)] e i dp

-

]

Lt

a=-=0

; 0
e g J o™ i dl]

]

i
e 1

:

§=s 0

Sy o
= Lt prta i g _ J'crg.-;m: dl]

D —

=

[T s T° (a = {0
— 15 [ =
~iSilea e i €=1; =0
{2 + j{I) {a - j02)
T [ e _ e" e e
20 ari) fa+ i) a-j)  a-jQ

o i = & g b s
“lari@ a-je) @ jo

2
Fisen(t); = —
s} = <5
The plot of signum function and its magnitude spectrum are shown in fig 4.26 and fig 4.27
respectively.
x(t) %)=+l ; t=0
==1 ; t<0

Fig 4.26 : Stgnum function. Fig 4.27 : Muagnitude spectrum of signum function.
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Fourier Transform of Unit Step Signal

The unit step signal is defined as,

uit)=1 ; t20
=0 ; t<0

If can be proved that, sgn(t) = 2u{ty -1 = ul1) = % [1 + sgn(t)]
Lox(t) = uft) = %[1 + sgn(t)]

On taking Fourier transform of the above equation we get,
F{xw} = rr{% [+ sgn(t]]}

- X(j) = fr{%} + rp{% sgn{t)} - %m} + %T’{Sgn(i‘)}

| 1[2]_ 1 Using equations
el [2rm&()] + 3 J—n} = nd() + j_ﬂ {4.58) and (4.59)
s | Fluft)) = =8(02) + L ..... (4.60)
jQ :
The plot of unit step signal and its magnitude spectrum are shown in fig 4.28 and fig 4.29
TBS]}ECﬁVEl}’. lwreimnl - —ermn !

: 1
|x( iy = xE(0) + T

[XGLn|
x(t) 4 xy=ult)=1 ; =0 i 3
=0 ; t=<D il
[ J 1
* 1
o [4]
Fig 4.28 : Unit step signal. Fig 4.29 : Magnitude spectrum of unit step signal

Fourier Transform of a Periodic Signal

Let, x(t) = Continuous time periodic signal
X(jf2) = F{x(1)} = Fourier transform of x(t)

The exponential form of Fourier series representation of x(t) is given by,

x(t) = 3 ¢, ek From equation (4.9)

o= =%

On taking Fourier transform of the above equation we get,

X(j) = F{x(v} = ‘F{ i c, c"“""‘} = i c, -_F{ciﬂol-}

n= =x

- i c, 2n8(Q-nQ,) = 2n i ¢, 2n8(0-n,)

B i i

|Using equation (4.61)|
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woH2mey S04 3Q ) + 2w, 8(0Q+20,) +2me | 5(2+ L))

+2me, () +2re, B(Q-Q,) +2ne, 82 -20,)

+2re, B(0-30,)+.....

e 3.63)

The magnitude of each term of equation (4.65) represents an impulse, located at its harmonic
frequency in the magnitude spectrum. Hence we can say that the Fourier transform of a periodic continuous
time signal consists of impulses located at the harmonic frequencies of the signal. The magnitude of
cach impulse is 2n times the magnitude of Fourier coefficient, i.e., the magnitude of n" impulse is 2 ¢ |.

2.2.4 Summary of Laplace and Fourier Iranform for Causal Signals

xt) X(s) X
for =0 to [xde = xe), ]
a(t) 1 1
! 1
uw . ia
1 1
1 u(t} S: ‘jn}:
n=1 (:) 1 1
u - ey
(n—1)! 5 (jy)
where,n = 1, 2, 3, .....
t u(t) 2 R
where, n = 1, 2, 3, . s (<)
gl ! !
eTad s+ a R +a
. 1 1
teu(t) (s + a)’ (jft + a)°
. a, Q _ 0
Sl!'lﬂﬂ,l u-[t} 5"‘.' + n: Ejn)] i QE‘ ﬂ; _QZ
o s o _ o
cosfl,t u(t) ey GO+ Q-
W QU nu A nu
sinh £t uft) s (j) -0 O +0;
: .8 n . -A
coshQ,tu(t)) §-0 (jQY -0 o' +0}
0 L]

e sinf2,tu(t)

i

(0 + a)y + O

e cosf,tu()

JEX + a
(0 +a)y +Q
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2.25
Find fourier transform of following signals

(b) Given that, x(t)=e ™ cosfgt u(t)
Since u(t) =1, for 120, we can write,

x(l)=e*cosfigt . for tz0

e el
cos = ———
By definition of Fourier transform, 2
.}-{lm} ; J- ) e gt = i’., cosn,la"'ﬂt - j’-u[e”!' ;a-l‘u'] oo
- Q L]
LI SR 1T gtt g-Fiet gt
2!0 "' e d+2!u e Mo g ™" gt
= %!"-u €lo + KL gy %I.-«-m-mm
1[ e@-mem T 1 @ {4+ idp « gt
= 5.4:.—1:),»,;1)1 +E[-{aoiﬂ,+]ﬁ][
=1 [ e " e’ a3 . e’
2|-a-j0, +) Ha-jy+jqQ) 2 |-(a+)0, +00) ~a+j0;+[0)
4L 1 1 1
3 rmeml P w]
1 1 1
“2 (2 + Q) - * (a + ) + Fno] (it = stV [a )
L@+ o+ a s ja) -0
2] (a+gQ)F + 0l
- 1 _2(a+j0) = a+ 0
2 (@+jOfF +0f @+ F +0f
Example 4.14 X[t}
Determine the Fourier transfarm of the rectangular pulse shown in fig 4.14.1, .
Solution
The mathematical equation of the rectangular pulse is, -T T t
(1) =1 : fort = -Tto +T Fig 4.14.1.
By definition of Fourier transform,
o - +T - gl +T
Fix(ty} = x(t)e ™ dt = 1xa e | ——
ks Jatioma.- [iuamin [55] _
i PO, s
=9—_m—-%=%[a'm—n'mj=-£1——zishnT 2]
sinf1T sinIT
-ET-ET-!-ﬁ- ai%alsiﬁcﬂ
= 2T sincnT
57
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Example 4.15 (1)
Determine the Fourier transtarm of the tdangular pulse shown in fig 4.15.1. s
Solution - —

Fig 4.15.1.

The mathamatical equation of tiangular pulse is,

M) =1+ % ; forts -Tto0

1 - % ;v fort = 0t0 T
(Please rafer exampla 4.11 for the mathematical equation of friangular pulse).

By definition of Fourier tranaform,
Fx(t) = T:{t}e'“m - j‘[1 . %]a'ﬂdl * j (1 - %]a g
T [

remasfemas1fiema [fov = ojv [ ]

e 1| e @ 1 e
[l v [ D] +[R] - Tie]
1 - = £ = 3 —jin
=_E,,r=r}‘_',_.___[laﬂn J’anulT _m[.ai"]u+-—[|e'ﬂl _Fe'dl]o
T
= -L -pe - _1_ . SO ) -t L - _ ﬁ
0 I! nT [tﬂ -jﬂIl [ ]u * [ 8 _F]:L
o |
o ar e or & | 1 1ot _ o
Jﬂ [ - @l ] IﬂT [U o + Te + _}n] i e BI
=0T [i]
e 3 [ = Faer
+ T [ o 0+ _m:|
:--.L + ﬂ.— 0+ L - .E-F_Jir. - Elllf - G-JI" + _l- 1_..3_{“1. - ﬂ_‘ﬁ -0 +_1
RS ™ om T ;o T0? T2
e e N e i AL :
W TR e Y g gt cos =ﬂ12-'3—ﬂ
= 72?“ - cos0T)

Alternalively the abave result can be expressed as shown below.

Flxn} = 2 {1 - cosIT) = ;2 [1 - cosz[%]]

sh;[m)

2 [ zﬂT 2£1T 2 1 - cos 20
= —= |28 — | =T —sin"— =T ——== ginlfa ———2=
0P 2 T"'ﬂ2 2 [ﬂ_T)z -

2
2
sin 1 ary
= T|—i-| = T[sinc—] SNY - sinco
L 2 i
2
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2.3 Definition of Laplace Transform

In order to transform a time domain signal x(t) to s-domain, multiply the signal by e and then
integrate from —eo to <o, The transformed signal is represented as X(s) and the transformation is denoted
by the script letter L.

Symbolically the Laplace transform of x(1) is denoted as,
X(s) = Lix(1)}

Let x(1) be a continuous time signal defined for all values of t. Let X(s) be Laplace transform of
x(1). Now the Laplace transform of x(t) is defined as,

-

Lix(U} = X = [ x0e™ a al36)

—

If x(t) is defined for t = 0, (i.e., if x(t) is causal) then,

T

LX) = X = [xme™ at 37

The defimtion of Laplace transform as given by equation (3.6) is called Two sided Laplace transform
ot Bilateral Laplace Transform and the definition of Laplace transform as given by equation (3.7) is
called One sided Lapiace transferm or Unilateral Laplace transform.

Definition of Inverse Laplace Transform

The s-domain signal X(s) can be transformed to time domain signal x(t) by using inverse Laplace

transform.
The Inverse Laplace transform of X(s) is defined as,
LX)} = =) = 1" T;:(“} e ds
2, ;. in

2.3.1 Existence of Laplace Transform

The computation of Laplace transform involves integral of x(t) from t = =50 to +oo,

Therefore Laplace transform of a signal exists if the intcgral,‘[_m x(t) ¢ dt converges (i.c., finite).
The integral will converge if the signal x(t) is sectionally continuous in every finite interval of t and if it is
of exponential order as t approaches infinity.

A causal signal x(t) is said to be exponential order if a real, positive constant o {where o is real
part of s) exists such that the function, ¢ ™|x(t)| approaches zero as t approaches infinity.

ie, if, 'l_:t‘= e™™ |x(1)| =0, then x(t) is of exponential order.

For a causal signal, if .]_".t, e |x(1)|=0 for o> &, and ifil__.trc'“'|x(l)|=m foro<a, then
o, is called abscissa of convergence, (where o_is a point on real axis in s-plane).

The integralj-'mx{t] &" dt converges only if the real pant of s is greater than the abscissa of

convergence . The values of s for which the integral J-:: x(1) ¢ dit converges is called Region Of

Convergence (ROC). Therefore for a causal signal the ROC includes all points on the s-plane o the right
of abscissa of convergence,

59
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Example
Determine the Laplace transform of the following continuous time signals and their ROC.

a) x(t) = A ult) by x(t) = tult) &)ty = e ult) o) x(t) = & u{-t) gl x(t)= e
Solution

a) Given that, x(t)=Au(tj=A ; t = 0

By definition of Laplace transform,

. = = o -5 s f -5t Put,
L) = XG9) = [xetdt = [AeTat = A oo i
0 o o
-t ]" o+ jop T T o-la + e o -8 il 1
= A|:E_:| = A|:E !l: = AI[B 2 E-j| = AI’L + 1:
- |, - § ] -8 - | - 5|
When, o =0, (i.e, whenoispositive), e =g =10 ) 18
When,o =< 0, (ie., whencisnegative) e =g'=mx §-plane

Therefore we can say that, X(s) convergeswhen o = 0,

When o > 0, the X{s)is given by, i /"
R, R x o g 4
x{s}=gi+l=gu37+1=ﬂ' . .
-5 ] -5 5 s Fig I : ROC of xft) = Aufi).
N L{'ﬂ. U(f}} R = with ROC az all points is s-plane to the right of line passing through o = 0.
for ROC is right half of 5-plane).
b) Given that, x(tj=tu(tj=t ; t = 0
By definition of Laplace transform,

Lt = Xis) = jxtt]a"‘ dt = Its"‘dt

‘jw=ujv—j[du]v]|

a-m"' . gt gt ' g 4 goln i v gl i .
= [t_—s = I 1= T it = : - E—E =1 > - 7
&l [ i o i i

L8

[0+ [l o ~(7 + W 0 Plﬂ.
=’r-x.->¢e SI —Uxis—e 2 +':—P“ S=o+j0
e-ﬂ ¥ m e--i'fi ¥ e-r- T E-H X 1 .
= 5 Sl Py * Fel i2
- . s-plane
When, o = 0, (e, whenoispositive), e =e =10
When,a < 0, (ie. whenaisnegative), e =gz - / :
o
Therefore we can say that, X{s) converges when o = 0. /
When o > 0, the X(s}is given by, ,4
eI g0 w geltea i Fig 2: ROC of x(t) = tuft),
X(s) = | = ¥ = 5 =
-5 5 5
O xelen  gyghrs g 1
= || x - o E
-5 5 5 g
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c) Given that, x(tj =eu(t)=e™ ; t= 0

By definition of Laplaca fransfarm,

L{x{t}} = X{s) = :IL?il:ﬂB'Edt & j.tpa3I a gt = J g il gy

-F LI ]
PRCEE | ’ e & grim e e i T Bl
TeaL T Teva Teed 543 543 s=0+/0
E--{rlSII--EuE-l i ek-ce-ﬁl-r 1
e — o — o — +
5+3 5+13 5+ 3 5+ 3
where, k=o+3=a-(-J)
When,o = -3, k= o-(-3) = Positive, " e®=e'=0
When,o < -3, k= o-(-3) = Negative, . e ™ =¢" = m o
Therefore we can say that, X(s) convergeswhen @ = -3, ///‘
When o > -3, the X(s)isgienby, d

Fig 3: ROC of xf1) = e uft).

E-kr\.a-iﬂ'{! 1 uxe-inz-\. 1 1
)(I:S] i + = - =
5+3 5+ 3 8+ s5+3 8+3
; 1
f{ﬂ at “m} = ; with ROC as all points in s-plane to the right of line passing througho =- 3.

s+3°
d) Given that, x{tj=e®u(-t)=e™® ;1= 0
By definition of Laplace ransform,

LX) = Xie) = Tu[ﬂa""‘ it = !9'3' e dt = Ja-ﬂ' W gt

-4 - -

e-.‘a + 8l ¢ eU ei*. + 3= i el-.r +J51 3 % _tu::i 0
= = - = - + T
—{S+3}.ﬂ “5+3) -Hs+3) 5+ 3 5+ 3
1 e|cr-5.|“ej:1y¢ 1 ea-\-euex;
== + == +
g+ 3 §+3 5+3 §+3

where, k=o+3=a-(-1J)

When,a > -3, k= o-(-3) = Positive. . e"=g" = o
When,a <« -3, k= a-(- 3) = Negative,. .~ e"=g'=10

Therefore we can say thal, X(s) converges when o < -3,

When @ < -3, the X(s)is given by, Figd s koC Uf—"m = ¢ f-t).

PO  BOR L
5+3 g8+ 3 5+3 5+3 S+ 3
E 1
J’-{B lt H{-t}} == 575/ ithROC asallpoints ins-plane to the left o fine passing through o =- 3.
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) Giventhat, x{tj=e ! =e" : t<D
et t=0

By definition of Laplace transform,

i o i 1] 0
L{xlt)) = X(s) = j'::tt! ot = je" e dt + I e gt = Ia'ﬁ""'dt + Ie"’""" dt
& - 0 -t i
gle - Bl gte vt T [ gt gls -4 1 '&-15...4-,\— gt
— = = + -
-5 - '”... -5 + 4 0 |5 -4 s -4)| |-(8+4) -3 + 4)
1 glm i ap g (Fe B dp i
= - + - +
5 -4 5 -4 5 +4 5+4 Put,
1 gln — 4 ww gl n priv s gt 1 S=o+i}
= - + —_ +
s-4 § -4 544 5+ 4
When,o < 4, o-4=MNegalive. e "=g =0
When,o = 4, a-4 = Posilive, Ltz gt =
When,o < -4, o+4 = Negative, e lnir=g" =g
When,o = 4, o+4 = Posilive, seldrz grz )
Therefore we can say that, X(s) converges when o lies between -4 and +4,
When o lies between - 4 and + 4, the X(s) is given by,
fa = dpux 1= e LR | B )
Xis) = - V. gt _ g [ .
5 -4 5 -4 5 +4 5+ 4 i
1 a..a|[:--- E-.&}u... 1
= + +
s -4 R | g +d 5+ 4
I 0xe™ " 0xegh™ , ]
T os-4 s-4 5+ 4 s+ 4 o 4 o
= - 1 +0 -0+ 1
L ] 5+ 4
” ’ -4
= 1 s-4-(s+4) _ B Fig 5 : ROCofx(t)=¢ ",
T s5+4 8-4 (s+4)(5-4 s -16
a (a+b){a-b} = a>-b*
r 1{5‘4"'} = -m » with ROC as all points in s-plane in between the lines passing through o= -4
ando=4,
Find Laplace transform of the signals (2) and (3)
|
x(1)&
4
0 a "i a 1
Fig 3.3.2. Fig 3.3.3. Fig 3.3.4.
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To Find Mathematical Equation for x(t)

e
Yi— ¥ K~ %

Consicler the equation of straight line,

Here, y=x(l), x=L

-y -y

~. The equation of straight line can be written as, =
A - x) L=

Consider points P and Q, as shown in fig 1,
Coordinates of point- P=[t , x{t }]=[0, 0]

Coordinates of point- Q =1, x{L)1 =[a. al

On substituting the coordinates of points - P and Q in equation - (1) we get,

-0, 10 W)t

H=1
0-a 0-a -a -8 T M
LAty =t for t=0toa

=0 fort=a

To Evaluate Laplace transform of x(t)

L{x(t)} = Xis) = J X1 e di = J‘ o ¥ ot

e

51 al -8
5 txe——j'lx ol e Juv = ufv— [[du]v]
-5 -5 5 8 T
I} k! u=t | v=8
ae™ ¥ el 1 @™ ag™
== g Tt ETETm
g g 5 5 !
= l[1— e {1 +as)|
o
i To Find Mathematical Equation for x(t}_
Consider the equation of straight line, % Mty N St
¥i = ¥Ya Ky = K
Here, y=x(t), x=t
. The equation of straight line can be wrillen as, ety It 1)
xty) - )‘{lgi 4y = l:
Consider points P and Q, as shown in fig 1.
Coordinates of paint - P =[t, x{t)] = [0, 1]
Coordinates of paint - Q = [t,, x(t,}]] =[a, 0] {J
x1
On substituting the coordinates of points - P and Q in equation - (1) we get, " P
-1 t-0 1 t
= —— = W) -1=-——= = xé)=1-—
T-0 0-a ) a " a a
axft) = 1-% cfort=0toa o a
a Figs
=1} for t>a

To Evaluate Laplace transform of x(t)

L) = X(s) = ] xit) e dt
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]
|
M
=
[
+
m
[
b
|
| =
e
|
o
ml
i
w
|
11}
4
+
o
+
]m
=]
L

S s a 5 = =
e 1 e s e 1
= Mo " T 2
= = 5 as as
1 e s 1 1 —
= — + - = =] +as —1
5 as® as” as? [ ]
Example Find the Loapiace transiorm el e i wove reciiffed onipuad as
shovn in Fig.
Fir) A
A
0o ! s
T2 T 3T t
Solition The function for the given wavetform is
iy = A sin wgf for O =< § < 772
Hence.
, i
. e Nr
c{r}=——-mz [ rire ™ dr
'I = e £ 4=
[
P T2
—-  !PEE b - ] At
= | —T J‘ sinwgfe Tdr
— 5
A [ — st Tr2
| & .
= == 3 = (— 5500wyl — g COS )
| —e i o o B
A | [ S ) 1
— a7z ¢ 2 >y | W s t"’fl'|
l—e 77 (s 4+ wmg)

Aoy (147"

F) z B
4wy (1—e il

Amﬂ IEsil".-':i A /4
= a T i = 4
Pl e _g T4
A
== ,—“.,COI"I { STI,I'rq'}
&= l'l.)l‘;
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Determing the inverse Laplace transform of X(s) = =

si{s + 1) (5 + 2)
Solution

Given that, X(s) = m

By partial fraction expansion technigue, X(s) can be expressed as,

x{s}:#:ﬁ‘ KE + KG’
85+ 1){s + 2 5 5+ 1 542

The residue K is obtained by multiplying X(s) by s and lettings = 0.

|{1=X{5}x5| =;xs = é 2 =1
=0 ss+ 15+ 2) I s+ 1)(s+2 i 1x2
The residue K, is obtained by multiplying X{s) by (s+ 1) and letting s = =1,
2 2 2
K = x = —— K = -— = =
N 17 ik By} [T ey
The residue K, is oblained by multiplying X(s) by {5 + 2) and letting s = -2.
_ B 2 . 2 _ 2 B
o= Xl BB, 5= s(5+1) (s+2) (x2) o, slsHN) | 22+ 1) 1
2 1 2 ]
M8 = sfs + 1) (s + 2) TR Y
Now, x(1) = £1{x[5)1 = _["[-l = £ + u—l—u}
5 5+ 1 5+ 2
= U = 26 uff) + &
I :
= (120" + % ul) = (1 - e*Pul) ey =0 Dy
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2.3.2 Region of Convergence
The Laplace transform of a signal is given by j x(1) e™ di, The values of s for which the integral

]

r x(t)y e™ dt converges is called Region Of Cﬂnverg_e;ce (ROC). The ROC for the following three types
E_lFSigIlﬂlﬁ are discussed here,

Case i : Right sided (causal) signal

Case ii : Left sided (anticausal) signal

Case iii : Two sided signal.
Case i : Right sided (causal) signal

Let, x{t) =e™=u(t), where a>0

=e*fortz0
Now, the Laplace transform of x(t) is given by,

Lix(t)} = X(s) = ! Mye™ dt = J' e u(t) e dt

-
- o —{s vap
= Ie" e di = Ic‘“"" dt = J:ic ]
0 (1] _{S > ﬂ] iU
a-lm i +am &t el tal nm g fln 1 Put,
= - = - + s=o+|fl
-(s + a) ~(s + a) s+a s+a
~k=m —fl=zm
[ [4 |
L L{x}= - +
s+a gs+a

where,k =g +a = g =(-a)
Whena >-a, k = ¢ —(-a) = Positive, ..e¥™=¢== 0
Wheno<-a, k = g —(-a) = Negative, .. ¢** = g = o

Hence we can say that, X(s) converges, when o > —a, and does
not converge foro < -a.

7

Fig 3.2 : ROC of x{t) = ' uf).

= Abscissa of convergence, o = -a.
When o = —a, the X(s) is given by,
~kwm  =flam - ji1 ==
LX)} = X(s) = -=C o 2 _BX4 o IR

s+ a §+a s+ a g+ a s+a

Therefore for a causal signal the ROC includes all points on the s-plane to the right of abscissa of
convergence, o= ~4, as shown in fig 3.2,
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Case ii : Left sided (anticansal) signal
Let, x(1) =e™u(-t) =c¢™fort <0, where b>0

Now, the Laplace transform of x(1) is given by,

. i a
L0} = X0 = [x@e™dt= [e™u-ne™ d= [eme™ a :
1 s 0 5l bo '
= J-c'l‘*'U]' ais l=l b . etl B ela s
A ~(s+b)]  ~(s+b) -(s + b) Put,
1 elorh rmace 1 gkrw il xo s=d+jl
—-s+b+ s+b T s+ s+b
where, k =o+b = o -(-b)
Wheno >-b, k = o —(-b}=Positive, . "= e*= /%/ 18y
When o <-b, k = g —=(-h)=Negative, - == e==0 phyllicie
—y
Hence we can say that, X(s) converges, when o < -b, and o i
Abpscissa of
does not converge for o = -b. =)

. Abscissa of convergence, a_ = -b.
When o < -b, the X{s} is given by,
kem _flwoe ==
L. et e MO - 0 x & .
s+b s+b s+b s+b s+b

‘Therefore for an anticausal signal the ROC includes all points on the s-plane to the left of abseissa of
convergence, @, = b, as shown in fig 3.3.

Fig 3.3 : ROC of xft) = e™uf-i).

Lix(n} = X(s) = -

Table  : Some Standard Laplace Transform Pairs [ Note : o= Real part of s|

x(t) X(s) ROC
B(t) 1 Entire s-plane
u(t) 1 >0
s
1
t u(t) == o=0
5
a=1 1
u(t)
{n =1} - a0
where, n=1, 2, 3, ......
e u(t) ! c>-a
5+ @
- u(-t) = _']_ 2 o<-a
= ull) =
where,n=1,2,3 ..... g+t a>D
|
te™ u(t) s+ a) o>-a
l n=1 ~-al
t" " e™ u(t
:m=Che © ] n a>-a
where, n = 1,2, 3, ..... e

AllAbtEngg Android Application for Anna University, Polytechnic & School

67



www.AllAbtEngg.com

t"e ™ ut) o!
[S + E|:In-+|- o>-a
where, n=1,2,3, ...
: 0
El.nnntll{t} #ﬂ—f a>0
L
5
cosfl,t u(t) PR L S
51 o n‘}. a>=0
sinh €2t u(1) 0,
o>
s - Q) i
5
coshf),tuft) o>,
si = nni
o
e ™ sinQ tult) G+ a)zn+ Q. Hee
= s+a o>-a
ol Graten;

Example
Lat, X(s) = L{x(t)}. Determing the initial value, x(0) and the final valua, x(=), for the following signals using Initial value
and final value theorems,
1 _ s +1 " s+ 6B
a) Xis) = 1 b) X(s) = P BT c) Xis) s@s + §)
8 +1 5+ 5
DA s P gETS
Solution
1
a) Given that, X(s) = m
. i e 1
Initial value, x(0) = .':'..“‘S:" al_.Ls = = .1:I‘ -9 = .I_.'I‘ 3[1 = 1]
5
1 1 1 1 1
=.'L'-E(‘_1)=E['_1]‘°“ et
] o
9 T (AR
Final value, x(=) = ’I:-ln sX(s) = =l-'-ta 5 PregT = .'I:‘n rrpeer Ml e 1
s+ 1
b) Gi —_
VR LR 8 + 25+ 2
g +1 L %]
Initial value, x(0) = Lt sX{s) = Lt fg——— = Lt 5— - e
[} § - {] s+ax 8% 4 P8 4+ 2 & 551 2 2]
. — & =5
8 5
1 1
i 14+ = ) 1+ = 1+0 ;
|-.-|1+E+% 1+£+£ 1+0+0D
s g ®  m
Final vilse, k() = LL aX() = 11 & —o—t]
10 v20 B2+ 25+ 2
0+1
T
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T + 6
c) Glven that, X(s) = m
7 & 8 7 = E]
Initial walue, x(0) = Lt =X{s) = Lt s—— 5 _ 1y n—[—’—
—= s—== s(35 + 5) —= 52[34 E]
s
=] =]
=Lt?+;=T+;=T+G=_-1
1 ey 5 3_'_5. 3+ 0 3
5 o
is + B
Final value, :f.{ﬂ‘.i}- il—-lﬂ sX(8) = .Ljuﬂm
= L Ts + B - 0O+ 6 _ E
s—0 385 + 5 0+5 &
d) Given thet, X(s) = —* 1 _
& + 65+ 5
s“[1+—1-.-]
i 3?4+ 1 8¢
Initial value, x(0) = Lt sX(s) = Lt §——— = 1 § ——~—
b S +B5+5 nes 2{ ] 1]
5711 + + oy
-}
1 1
1+ — 1+
= ‘Lt B sll1=:.-: E""]— 140 e
2 14+ + =y 14 + 1+0+0
5 g Ex 1]
FLape | D+1
Final valua, x(=) = 1 s¥is)= Ll 84— —-— =0 58 —m08 — =
4 [] |L+I'.'I ":. s 34-|ES+E 0+04+5
€) Given that, X(s) = ——t—
s8°(s + 9)
5[l+—
o 545
Initial value, »{0) = Lt sX(s) = g — = Li a
e sea o &8+ ) [1+ J
5
5 1
14+ 1+ —
= LI! g=1x —-E'-=I]r:+'-]=[]
R e 1+ Ll
5 2
5+ 5 5+5 D+5
Final value, x(=) = Lt sX{s) = Lt 35 — = e = e =
Sl (Rt e sfs+ 9 s-os's9s 040

233 LAPLACE TRANSFORMS OF SOME IMPORTANT
FUNCTIONS

1. Unit Step Function
fFlg)y=1,0<t < ==

Liu(@)} = TLe—“d: = ——[e—*"]“ = -—m -1 ==
(1]
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2. Exponential function
() = Ae ™™

£lAe ™) = [ Ae e = dt
o

— Afetavoras
o

e A —la 1 - A
B a+s{e ‘”E (s +a)

Hence, cLlAe ®) =

3. Sine Function

fF(t) = sin g
Using Euler’s identity, we have

sin Wyt = -—21—_{ejm°‘ —e_jw:l
J

Hence, £{sin wy ¢} = 'ﬁ']'}.'[,ﬂ(ej woly _ pe~F @of }]

_i[ 1 _ 1 ]= Wy

2jls—Jjay, s+ ja, s? + wg
0,

Hence, £lsin wy ¢} = ——2—

Yo s? + w2

4. Cosine Function
F(t) = cos wyt
We know that cos wgt = %{ej ot 4 @ “"")

L {cos mgt] = %[L{ejwi + L(e 700" )]

]

1 1 1 s

— e = =

2|5 — jwy s+ Jwg 32+m§
s

2 =2

Hence, £{cos t} =
mﬂ S =+ mu

5. Hyperbolic Sine and Cosine Functions

sinh my, # = %[e"’ﬂ‘ — W0 "]
cosh wg ¢ = %[e“’“‘ + g~ "0r]

£Lisinh wot} = 2[£Ce™ ") — e )]
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Lisinh m, t] = -

Similarly, £ {cosh wyt} = %[L(e‘”"'} % & L{e_“’“‘}]
&. Damped Sine and Cosine Functions

Jwgt = Jopt
Lie™ gin wg 2] = L{e‘“‘[e 2; )}

© L [ofen ot _ o s

- 1 _ 1
Zils+la— jwgy) s+ (a+ jmwg)

_ 1 1 _ 1
2jl(s+a)— jwgy (s +al+ jmg
Wg
(s +a)? + wg

g
(s + a)? + q:r%

Hence, Lle™ sin wg ) =

Jogt | ,-Jugt
Similarly, £le™ cos wyt} = L{e‘"’[e £ )}

2
B s+a
(s +a)* + o

s+a

Hence, Lle™ cos agt) = —————
(s +a) +wj

7. Damped Hyperbolic Sine and Cosine Functions

wyf — o &
£ie™ sinh oy t) = L{e'“‘[%)}

_ 1 —(a — gty —{a + wg e
= S lcte 0}y — £(e 0}5]

- 1 —. 1
2|s+a—w S+ @+ wy

Wo
(s +a)* —wj
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—ar _= = wr o
Hence, « {e sinh wg# = .
Similarly, = e cosh wg )} = =X +2a -
{s + @) — wg

8. t" Function

£ e} = Tt" e *de¢ = Tr" d et )
[l o

—_=

n_ —af ™ -~ —&r
r e = _J'e ™ ldas
—a g a —S

Il
i

}:e_“ ™~ dge
o

I

Similarly, c{" 1) =7 —1 o n-2,
5

By taking Laplace transformations of t" %, ¢* =¥, ... and substituting
in the above equation, we get

dit) e BBE R B L iy
s 8 8. §s8
n! g, n! 1 n! g A ——
=—L(t")= - ® i ST when n is a positive integer.
8

!
Therefore, £{t"}= ;,.E:f

Substituting n = 1, we have £{t} = 1/s*

Example Find the Laplace transform of the following functions
(a) f) =13+ 32— 6t +4 (L) f(¢) = cos® 3¢
(¢) f(t) = sin at cos bt (d) f(¢)=tsinat
I3
(@ f(t)= =5 ® FO)=5(2-3t+2)
Solution

(@) L{f (D)) =cl®+3t°—6t+4)

3! 21! 1 4
B ppd gl &
P
6

34

6 6 4
b= -t =
33 32 5
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(b) Ait) = cos® 3t
We know that cos 34 = 4 cos® A — 3 cos A

cos 9t + 3 cos 3t:|
4

Therefore, cicos® 3t} = L[

1 s 5

= +3
4[32+92 32+32:|
1 5 g 3s
4| s* +81 s%+9

(c) £{sin at cos bt} = L[%{ain (a +b)t +sin(a -b}t}]

21[ a+b ors a—>b ]

2|82 +(a+b)? 5% +(a-b)*
(d) it sin at) = — - £ [sin at]
ds
__A[L]
T ds| s2 +a?®
= —a-2 [(s? + a?) ]
ds
— iz 1 -
- a[ (s2 +a?)? 2S:|
- 2as
(s2 + a?2)2
ot
(e) ﬂt}=[1 e]
t
Here, o T U SRS
s (s-1)
1-¢'] 71 1 ,
L{ . }=![;-[5_1]]d3=[]ngs—log{s-ﬂl,

AllAbtEngg Android Application for Anna University, Polytechnic & School

73



www.AllAbtEngg.com

[ (- 2]

= tog (1-3) = s (*37)

(f) The given impulse function is f(¢) = 8(t*— 3¢ + 2)
=8[(z — 1)t — 2)]
=8(t — 1)t — 1)+ &(¢ — 2) u(t — 2)
=8t — 1)+ &t — 2)

Therefore, F(s) = . [6(t — 1) + L [&(t — 2)]
=e* +e
Determine the Laplace transform of the rectangular

pulse shown 1n Fig. E3.2,
L ()

Solution  F(s) = £ifit) = [fe)e ™ dt
0

T
=j'1-e""dt
0

iy
=5 ol T

Fig. E3.2

==[1-eT]
5

For the waveform shown in Fig. E3.6, find the Laplace
tr. orm.
A fn

A |-mmeaa

0 m
Fig. E3.6

Solution The function for the given waveform is
ft)=Asint forO<t<mn
=0, t>m
By definition, we have

LIf®) = [ f@) e de
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A sin ¢ e At

I
o

=.A | sin ¢t e *dt

=h T

= ﬁ [e * (—s sin ¢ — cos £)]3
52 4

e 2" 41
(52 + 1)

INITIAL AND FINAL VALUE THEOREMS

Initial Value Theorem

If the function f(¢) and its derivative f ‘(¢) are Laplace transformable,
then

Lt f(t)= Lt sF(s)

r— 0" e s
Proof We know that
L{f @) =s[c £(£))] = £(0)
By taking the limit s — < on both sides
Lt £if'aen = ST:t [sF(s) — fF(0)]

& = o

Lt [ e dt= Lt [sF(s)—f(0)]
o B —b s

B —s oa

As s— oo, the integration of LHS becomes zero

ie. j Lt [ f(¢) e*]ldt =0
0 8 =4 =o
Lt sFi(s)—f(0)=0
]
Therefore, Lt sF(s)=f(0)= j LE} @
8 — == —s O+

Final Value Theorem
If £i¢t) and F’(¢) are Laplace transformable, then
Lt f(&) = Lt sF(s)

f —s =

Proof We know that
()} = sF(s) — F(O)
Taking the limit s — 0 on both sides, we get

LtﬂL{f’l’t]] = Ltn [sF(s) — F(0)]
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siﬂ;ﬂ{ F)e™dt = Lt sF(s) - £(0)]-

Therefore, j f(tdt = Lt [sF(s) = f(0)]
nlf(u]; = Lt f6)= Lt f®)= Lt sF (s)~£(0)
— - -+ g

Since f(0) is not a function of s, it gets cancelled from both sides of the
above equation.

Therefore, Lt f(t)=" LtusF{s)

§ = o

.34 LAPLACE TRANSFORM OF PERIODIC
FUNCTIONS

The time-shift theorem is useful in determining the transform of
periodic time functions. Let function f () be a causal periodic waveform

which satisfies the condition f(¢) = f(¢ + nT ) for all ¢ > 0 where T is the
period of the functionand n =0, 1, 2,...

F(s)= [ftye ™ dt
1]

T 2T (n+1)T
- jf(t}e"‘ dt + J’f(t)e"‘ dt + -+ j ft)e™* dt +---
1] T nT

As f(t) is periodic, the above equation becomes

T T T
= [fye* dt+e*T J’f-:t)e"-* de+--+e”™T [f(t)e™ de +---
0 0 0 ..

T
B T T | P
0

= [1+ gt +(e"’T)2 +---+(e_°ﬂ"]"IL + "']Fl(-‘i)

T
where Fs)= If(t) e~ dt
0

Here, F\(s) = £{[u(t) —u(t - T)] f ()}, which is the transform of the first
period of the time function, and {[u (¢) —u (¢t — T')] f ()} has non-zero only
in the first period of f(¢t).

When we apply the binomial theorem to the bracketed expression, it
becomes 1/(1- e~*T)

i
1 _st Fy(s)
F(g) = ——— He W di=—2
§ I_E-ET if( 1___8—91"

76
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e

ectangular waveform shown in Fig. E3.13.
Here the period is 2T

Solution

Find the Laplace transform

1

Therefnre, £ If(f}l = W
-8

aT
J'f(z}e"‘ dt

0

|

of the

periodic

f(r) A
A
o -
T 27 ar '
— A
Fig. E3.13
B 2T
=—L - |JAaetdt+ [(—A) e dt]
1—e Kk T
1 [(— A ; _guxT Ay 2T
- — L[R2 e |
1 |y =y A ¢ —2s -
p—T _—:{e 11_1)"'?("3 e T}J
SO . A - =
v s e e o et ]

1 A

1_E—ZIIT =

T s =T oy —RW
(

- ,el‘E‘T [1: [P _”1)2]

(X—e—TY

=

(L—e*T)(1+e"T)

1_E—IT

~If

i -a—T

A

=

J

tami (155
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Find the Laplace transform of the periodic sawtooth
waveform shown in Fig. E3.14.

Solution For the given transform, the peried of one cycle is T.
Hence,

: A,
LU0 = T——F [If{t}e “ dt] where £(t) = ¢
fir)

Al

T
T
1 A —
— - == t e d#
P, G
1—e™"* T-‘[
A 1 e et 7
B I—E_’T — & }u {32 }l:l
— =T —sT
_ A —I—T"I:T e e = " ]é]
T 1—e-" — 85 s =
A — T — =T
- 1—e — sTe
Example Find the Laplace transform of the full wave rectified

“output as shown in Fig. E3.15.
)

T2 T aTz
Fig. E3.15

Solution The function for the given waveform is
Flt)=A sin wgt for 0 <t < TI2
Hence,
Tiz

1 — &
LIf{t)l:W "!-f(t}e tde
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A Tr2
= Iﬁin mute_“ ot
1—e )

[ E_'ﬁ ( _ir'f'.f!
= A —g5 sin wg £ — wg cos wgt)
-8T72 2 2 o ] o

l—e s + iy o

A 1 -
= 1_2_'?_12 -(52 +mg)[{.ﬂue sT/2 +'Eﬂg.]

Aﬂ]n (1+E—3T.ﬂ'2]
s + o3 (L-e "’Tﬂ]
sTr4 -sT/4

Aw, e + e

g2 +m§ e 3T/

— i —sT/4

- —;‘1 D0 _ cot h (sT'/4)
s“ + wjg

Obtain the trigonometric Fourier series for the half-
wave rectified sine wave shown in Fig. E2.3.

[\

T amz
Fig. E2.3

—————

Solution As the waveform shows no symmetry, the series may
contain both sine and cosine terms. Here, f{£) = A sin oyt
To evaluate ag:

T2 _ 2.4
w, T
2A

Substituting wy 7" = 2n, we have ag = o

[-cos (waT/2) + 1]

To evaluate a,:

o, =

FlE) cos nwgt dt

2
A sin wy ¢ cos nwgtde

Njb N
]

O‘--né e

Tr2

_ 2A | —nsin wpl sin 1 Wet — cos n Wy cos Wyl
woT -n? +1 o
Substituting wy, T = 2x, we have
A

= — [ T+ 1
a, =0 15 cos 1 1
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Hence, o= Lﬂ, for n even

n(l-n*)

0, for n odd

For n = 1, this expression is infinite and hence we have to integrate
separately to evaluate a,.

/2
Therefore, a, = T JA sin wyt cos wg ¢ dt
0

AT!E
'E"- lﬂm Zmot dt

A T/2
= — 2wg t
2(00 T{ COS &g o
When wy T = 2n, we have a; = 0.
To find &,:
2 T
b, = ?jf(t)sin nwg tdt
0

T/2
_[Asin W, tsin nwy tde
0

by M|

5 . T2
_ 2A [nsmmntmsnwot—smnmotmsmnt]

W, T -n% 41 .

When w, T" = 2, we have b, = 0.
For n = 1, the expression is infinite and hence b; has to be calculated
separately.
T2
— % asin2 wot df

2A [mut sin 2mg :]m

T weTL 2 4 o

When wy T'= 2n, we have b, = %
Substituting the values of the coefficients in Eq. 2.2, we get

f@= %{1*—%sinmat—gcos2mot—-1—2gcos4mot— }

Determine the exponential Fourier series and hence find a,, and &,
of the trigonometric series and compare the results.

e A

+ A

- T2 o + T2

80

AllAbtEngg Android Application for Anna University, Polytechnic & School



www.AllAbtEngg.com

To evaluate c,
Since the wave is odd, ¢, consists of pure imaginary coefficients. From
Eq. 2.7, we have

T
cn=x [ F(&)e~Inwot az
(1]

N

i ] _ T2 _
= =| J-A)e It de+ [ Ae im0t ar
T 72 o
T
e A [f—l} 1 e—jnmnrJu +[ 1 e_-jnmu.t] e
T (—jnwg) e L{—Jnomg) 5
_ A 1 o FnwalTi2) —~ Fnw(Tr2) 0
=== -+ +e —e
T {—Jnmn}{ }
2
When w,; = ?,we get
A T ] —Jdr "
cp = ?'_jnzn {_en + @ SR2RITYTIZY | ,—in(2nl2) (T/2) _e:)}
= . #£32 J_ L0 . Lfnmn -fnx __ 0 _ & A ednm
(—j2mmn) Sl i - ] Jn.ﬂ.'{ R
Here, e/"™ = + 1 for even n and e/"™ = — 1 for odd n
. 2.A
Therefore, ¢, = —j | —— | for odd n only.
nI -

2.4 PARSEVAL'S IDENTITY FOR FOURIER SERIES

A periodic function f(¢) with a period T is expressed by the Fourier series

as
i) = El% -+ Z (a, cosnwgt + b, sin nwgt)
n=1
Now, IF® = -%an i)+ ¥ la, Flt) cos nwy ¢ + b, f(¢)sin nwq ]
n=1

T2 Trz
Therefore, % [ tror dt:“’ﬂT‘m [ LF@r1ae

-T2 — Tz

1 . Tr2 Trz
E— z J:a,, _[ fltdcosnwy t dt + b, J'f{t)ainnmotdt]

¢ 1 -T2 ~T/2
From Eqns 2.2, 2.3 and 2.4, we have
TI2
2
@ = J; F(¢) de
-T2
o TI2
@n= J F@) cos nwg ¢ at
-T2
o 7I2
b, = T I F(t) sin nmg ¢ de
-T2

Therefore, substituting all these values, we get
LT trorae=(%) L 3 (a2 +52)
L[ ren?de= [_) +1 % (a2 + b2
T _qyz z 2.

This is the Parseval’s identity.
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2.5 POWER SPECTRUM OF A PERIODIC FUNCTION
The power of a periodic signal spectrum f(¢) in the time domain is
defined as

T/i2
1

P=_—= [F(£)]2 d¢
T —?'[.fﬂ

The Fourier series for the signal f(t) is

According to Parseval’s relation, we have
T2

P, = ;}-, [ traen® ar
-Tr2
1 L — Jreoon £
== J r@) > ecne de
T — T2 "=
—~ 1 Tr=
= 2 Cpy = J- Fle) el mmot g,
o T gz
= P, CnC.n

— E len I2 » Wwatts

i = — oo

2.6 Energy Spectrum for a Non-Periodic Function

For a non-periodic energy signal, such as a single pulse, the total energy
in (— oo, o) is finite, whereas the average power, i.e. energy per unit

time, is zero because =, tends to zero as T tends to infinity. Hence, the

total energy associated with f(z) is given by

E = T F2e) de

Since, f(t) = -2-'-]?:— J F(jw) e/t dw, we obtain

E= [ f® 2= | FUw e/ daat

1T i T et
= 27:_-[, F(Jm}[_l' Flt)yel® dt]dm

_ 1 F . :
= E__LFU@; F({— jm)dm

_ 1 T . .o o
—m— _[HFc_;m}F (7 w) dw
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-1 [ FG@
2K_L|I'{_.rm:ll dw

_[ | E(FI? dF, joules

E

T |F ey |2 de = f | EAH 2 arF

This result is called Rayleigh’'s energy theorem or Parseval’s
theorem for Fourier transform. The quantity |F (f)|? is referred to as
the energy spectral density, S(f), which is equal to the energy per unit
frequenc

7 PROBLEMS
Gate Function

consider the single gate function (rectangular pulse) shown in
Fig. It has the analytic expression given by

Fe) = {I. for —T/2<t <T/2
~ 10, otherwise
Ko A
P
el

Single Gate Function
The Fourier transform of f(¢) is

F(jw)=7[f(t)] J ft)e /@ dt

T2 .
= ‘{ 1-e719 dt
-TI2

I RS T
—_;_‘m[e JIm]-iw

I

_1_ [e—ju:-Ta’E _ ejmﬂz]
-jm .
sin (ﬂj
= T-— 22 = Tsine (47
(%)
Hence, the amplitude spectrum is

|Fja)| = Tlsinc(%]l

Z ol
0, sinc (—J >0
and the phase spectrum is LF (w) = 2
; wT
n sinc [-?) <0

AllAbtEngg Android Application for Anna University, Polytechnic & School



www.AllAbtEngg.com

AMPLITUDE SPECTRA AND PHASE SPECTRA

M /\ £ :
\/ '\\/ iTlo | NS o

-6n/T | -41:;"1" aniT an/T iﬁm’?’
' '. °U"’} A ' ’
L ke
- st —
®) ! : 0 [
i - -n
] .

Rectangular Pulse

Consider the rectangular pulse shown in Fig. The analytic
expression for the given pulse is

b ey

Fig. .

_ 1, forO0<t<T
F@)= { 0, otherwise
The Fourier transform of f(¢) becomes

F(jo)=F[ft) = [ fre =" ar

T _; T -
J’ e-Jwr dt:[e "‘"] _e 2T —1
—Jdw lg — Fm

(]

e—fmTi2

& [E-jmTIZ ___ejmT..FE]
— _J O

28—;’&17’!2 eJmTfﬂ . e—jw‘]"!z
- =7

L0 ]
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F mT)
— Ta—JSOTI2 Sm( =2
(%)
2
= T FoT'2 ginc (—-—-—sz]

AMPLITUDE AND PHASE SPECTRA

X ; | '
; A
Y
e

Find the Fourier transform of a rectangular pulse 2
seconds long with a magnitude of 10 volts as shown in Fig. E2.16.
A f(t)in (volts)

= tin seconds

4] 2
Fig. E2.16

Solution Fourier transform F( jw) of the given pulse is given by

F(jw)= _[ flt)e 2t as

85
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I

J Feed) e=7=t A

FC_j o)

— fends =

- _|' 10 e~ Ff J¢ = 1n[
— J o ]

= — o
o {}E*‘rm [p—:m_e.;m}
oo e ™ [e-"“’ -e*fm]

DO e—Fo Sin o
oy

= 20 & ¥ sinc @

Find the Fourier transform of the signal £ (¢) shown
in Fig.

A iy

b s ) Y o Sl i
x — xy x, — xg

Solution The egquation of the line OM is

f(z) -0 00— A
t—0 o-—T

Hence,

f(t)=%t.for0-::<?‘
= A, for T <t < 2T

F { jw) = J'—te—-""" dsr + _[Ae--‘“" dt

- A[ {&_—Jull } { - Fat }] . - =T
{— Jm] o — 7 oy &
— T e -
— Al e £ __ e s — O + %:I
T — o —_— —
- A[e—_}zm‘f‘ _ e—-,;‘u':l"
— _F o —_Fo
—_renﬂ" — Fea T — T — Jwa T
= al— - - :I.2 e —"‘ T
T o T oo Foud s
= e—Fwad _ 37 4 A o —F2mT
Tm2 [ ] ] o
— A —iwTiz [e-jm'r;z - e_.-'.n'rrz] S A —iZwT
T w™ oo
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Find the Fourier transform of the signal shown in
Fig. £2.28.

A KD

2

Fig. E2.28

Solution For the given signal ,

f¢)=2, for —1=<¢=<1
1, for -2 < ¢ < -1 and
1, for 1<t<2

=1 2
F(jw) = FIf@)] = J!z.e—fwf dt + j e iot gy 4 J'e-f“-* de
=1 -2 1
- o flaese ] e Th e )

= _%m {2(e7 - e/®) + (e’® - 2*) + (e7/*" -7 ")}
=

=l 3 Ejm_e-jm v ejza:_e-ﬂm _n ejm_e-jm
® 2j 2j 29

=%{sinm+-%sin2m—%sinm}

411 . !
_E{Eﬁmm+§sm2m}
=2smu1+25m2m

w w

=2 sinc w + 4 sinc 2w
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2.8 Inverse Laplace Transform by Partial Fraction Expansion

2.8.1 Distinct Real Roots
Consider first an example with distinct real roots.

Find the inverse Laplace Transform of:
5+1 A, A,

Blay—, o~ — . =~ +
®) s(s+2) s s+2
Solution:
+1 1
A1=...a.,s— =
.g;(s+2]g=Er Z
5+1 -1 1
Ay = S
). 2 2
So
11. 1 1
F(s)=——+—
25 2s+2
and
f(t)= ! U(t) 4 le‘E‘U(t)
2 2

2.8.2 Repeated Real Roots

Example: Distinct Real Roots
Find the inverse Laplace Transform of the function F(s).
$41 A A, A,
= " Y1 S &

F(s)= == +
©) sz(s+2) s+2 s 5

Solution:.
52 +1
A ]
L SEED)
52 +1
AE =
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5l
Fal

52—:1=52(S+2)[5i12 +%+%}

=s5’A, +s(s+2)A, +(s+2)A,

Equating like powers of "'s" gives us:

power of "s"|  Equation
s* 1=A,+A,

s 0=2A,+A,
! 1=2A,

51 11 11

and
5 o 1 1
) e e MW
4 4 2
2.8.3 Complex Roots
S+3

FE)= (s+ 5)[52 +45+5]

Example: Complex Conjugate Roots (Method 1)

s+3
F(s) = .
) (Sﬁ-ﬁ](524-454—5]
Solution:
s+3 s+ 3
F(s) = =
® (S+5](52+4S+5J (S+5)(5+2—j)(5+2+j]
= Ay Ay e A,

(s+5) (s+2-j) (s+2+j)

where
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=-0.2

(5" + 45+ 5)

3==5

SO

0.2 0.1-02j 0.1+0.2]

F(s)= : :
S+5 B8+2-—] S+2+]

2.8.4 Example - Combining multiple expansion methods
Find the inverse Laplace Transform of

55* +8s-5
F(s) = .
= s*(s® +25+5)
Solution:
F(s) = 552+85—5.:i+ﬂ_22+ Bs+C
s®(s*+2s+5] S § S+25+5

Since we have a repeated root, let's cross-multiply to get

552+85—5=52(52+25+5']!i+ﬁ—j+ﬂ
‘s s s+25+5

=A,(s%+25% +55) + A, (s* + 25+ 5] + Bs® + Cs

Then equating like powers of s
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Power of s/ Equation
s’ 0=A,+B
s [5=2A;+A+C
' 8=5A12A,
s’ -5=5A,
Starting at the last equation
A, =-1
1:8+2:2
5
C=5-4+1=2
B=-A =-2
So
2 1 —25+2
FHs)=——=+——"——
(s) S s s5°+25+5
21 -25+2
Hs)==-=+——-+—
S S (s+1) +4

f(t) =2 -t+e " (-2cos(2t) + 2sin(2t))

2.8.5 Example: Order of Numerator Equals Order of Denominator
Find the inverse Laplace Transform of the function F(s).
F(s) = 3522 +25+3
S°+35+2
Solution:
For the fraction shown below, the order of the numerator polynomial
is not less than that of the denominator polynomial, therefore we
first perform long division

3

52+35+2::352+25+3

35°+95+6
—-7/5-3
Now we can express the fraction as a constant plus a proper ratio of
polynomials.
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=34 ;E—B - -JS—3\
£ 31D (s+1)(s+2)
=3+ A1+—&L
s+1 s5+2
Using the cover up method to get A; and A, we get
Hﬂ=3+¥1u~lL
s+1 542

SO

flt)=38(t) +4e* —11e™

2.8.6 Exponentials in the numerator
Example: Exponentials in the numerator

Find the inverse Laplace Transform of the function F(s).
5['1 e a} + g 15

s(s+2)

K(s) =

Solution:
The exponential terms indicate a time delay (see the time delay
property). The first thing we need to do is collect terms that have the
same time delay.

S s+1 S
F s - -1.55 _ -2, 25 :
() ﬂs+2]+e 5ﬂ5+2)+e s(s+2)
- 1 e, S+ s 1
(s+2) s(s+2) (s+2)

We now perform a partial fraction expansion for each time delay
term (in this case we only need to perform the expansion for the term
with the 1.5 second delay), but in general you must do a complete
expansion for each term.

7
F(s)=—1 sersf1 1 1 ]+ g2

W

(s+2) L§§_§[5+2J

v 4 v o

(s+2)
Now we can do the inverse Laplace Transform of each term (with the
appropriate time delays)
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| 1 l E—Z,t—l.E:l _I,(t = | 5) 4 E—?(t—z.z.n?(t = 22)

()= +{5 -3

SUMMARY

1. The Fourier series is frequency domain representation of periodic signals.

3 The Fourier serics exists only if Dirichlet’s conditions are satisfied. ‘ ‘ ‘ ;

3. The signals with negative frequency are required for mathematical representation of real signals in terms o
complex exponential signals. ‘

4. In exponential form of Fourier series, | represents the magnitude of n* harnqulc component.

urier series, <, represents the phase of the n™* harmonic component.

i fF :
. In exponential form of Fo o (ot Harmwis DoAY

6. The plot of harmonic magnitude/phase versus harmonic number
called frequency spectrum. _
7. The frequency spectrum obtained from Fourier series is also called line spectrum,

8. The plot of magnitude versus n (or nf); ) is called magnitude (line) spectrum.

A

9. The plot of phase versus n (or nf}, ) is called phase (line) spectrum.

10. For signals with even symmetry, the Fourier coefficients b, are zero.

11. For signals with odd symmetry, the Fourier coefficicnts a, and a, are zero.

12. For signals with half wave symmetry, the Founer series will consists of odd harmonic terms alone.

13. A signal with half wave symmetry, if in addition has even/odd symmetry then it is smid to have quarer wave
Symmetry.

14. For signals with quarter wave symmetry, the Fourier series will consists of cither odd harmonics of
sine terms or odd harmonics of cosine terms. ;

15. The Fourier transform has been developed from Fourier series by considering the fundamental
period T as infimity.

16. The Fourier transform is used to obtain the frequency domain representation of non-periodic as well as
periodic signals.

17. The Fourier transform of a signal exists only if the signal is absolutely integral,

18. The Fourier transform of a signal is also called analysis of the signal.

19. The inverse Fourier transfonn of a signal is also called synthesis of the signal,

20. The frequency spectrum of non-perindic signals will be continuous, whereas frequency spectrum of periodic
signals will be discrete.

21. The magnitude spectrum will have even symmetry and phase spectrum will have odd symmetry.

22 The Fourier transform of a periodic continuous time signal will have impulses located at the harmonic
frequencies of the signal.

23, The ratio of Fourier transform of output and input signal of a system is called transfer function in
frequency domain.

24, The Fourier transform of impulse response gives the frequency domain transfer function.

25. The Fourier transform is evaluation of Laplace transform along imaginary axis in s-plane.
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