www.AllAbtEngg.com

UNIT II
COMBINATIONAL CIRCUITS

2. Combinational Circuits

A combinational circuit is one where the output at any time depends only on the present
combination of inputs at that point of time with total disregard to the past state of the inputs.
The logic gate is the most basic building block of combinational logic. The logical function
performed by a combinational circuit is fully defined by a set of Boolean expressions. The other
category of logic circuits, called sequential logic circuits, comprises both logic gates and
memory elements such as flip-flops. Owing to the presence of memory elements, the output in a
sequential circuit depends upon not only the present but also the past state of inputs.

Figure shows the block schematic representation of a generalized combinational circuit having
n input variables and m output variables or simply outputs. Since the number of input variables
is

— .
n Combinational i
Inputs Logic Outputs

Figure Generalized combinational circuit.

n, there are 2" possible combinations of bits at the input. Each output can be expressed in terms
of input variables by a Boolean expression, with the result that the generalized system of
Fig.can be expressed by m Boolean expressions. As an illustration, Boolean expressions
describing the function of a four-input OR/NOR gate are given as

¥, (OR output) = A4+B+C+D and VY, (NOR output) =A+B+C+D

Also, each of the input variables may be available as only the normal input on the input line
designated for the purpose. In that case, the complemented input, if desired, can be generated by
using an inverter, as shown in Fig.(a), which illustrates the case of a four-input, two-output
combinational function. Also, each of the input variables may appear in two wires, one
representing the normal literal and the other representing the complemented one, as shown in

Fig.(b).

100

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

In combinational circuits, input variables come from an external source and output variables
feed an external destination. Both source and destination in the majority of cases are storage
registers, and these

Combinational
Logic

e '
T

————>
Combinational
Logic
—_— —

(b)

Figure Combinational circuit with normal and complemented inputs.

A

Half
Adder-Subtractor — Y3

T
B—g

Figure Two-input, four-output combinational circuit.

storage devices provide both normal as well as complemented outputs of the stored binary
variable. As an illustration, Fig. shows a simple two-input (A, B), four-output (Y, Y2, Y3, Yy)
combinational logic circuit described by the following Boolean expressions

101

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Y, =AB+AB
Y,=A.B+AB
Y;=A.B

Y,= AR

The implementation of these Boolean expressions needs both normal as well as complemented
inputs. Incidentally, the combinational circuit shown is that of a half-adder—subtractor, with A
and B representing the two bits to be added or subtracted and Y,Y,,Y3,Y4 representing SUM,
DIFFERENCE, CARRY and BORROW outputs respectively.

2.1 Implementing Combinational Logic

The different steps involved in the design of a combinational logic circuit are as follows:
1. Statement of the problem.

2. Identification of input and output variables.

3. Expressing the relationship between the input and output variables.

4. Construction of a truth table to meet input—output requirements.

5. Writing Boolean expressions for various output variables in terms of input variables.
6. Minimization of Boolean expressions.

7. Implementation of minimized Boolean expressions.

These different steps are self-explanatory. One or two points, however, are worth mentioning
here. There are various simplification techniques available for minimizing Boolean expressions.
These include the use of theorems and identities, Karnaugh mapping, the Quinne—McCluskey
tabulation method and so on. Also, there are various possible minimized forms of Boolean
expressions. The following guidelines should be followed while choosing the preferred form for
hardware implementation:

1. The implementation should have the minimum number of gates, with the gates used having
the minimum number of inputs.

2. There should be a minimum number of interconnections, and the propagation time should be
the shortest.

3. Limitation on the driving capability of the gates should not be ignored.

It is difficult to generalize as to what constitutes an acceptable simplified Boolean expression.
The importance of each of the above-mentioned aspects is governed by the nature of
application.

102

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

2.2 Arithmetic Circuits — Basic Building Blocks

In this section, we will discuss those combinational logic building blocks that can be used to
perform addition and subtraction operations on binary numbers. Addition and subtraction are
the two most commonly used arithmetic operations, as the other two, namely multiplication and
division, are respectively the processes of repeated addition and repeated subtraction. We will
begin with the basic building blocks that form the basis of all hardware used to perform the
aforesaid arithmetic operations on binary numbers. These include half-adder, full adder, half-
subtractor, full subtractor and controlled inverter.

2.3 Half-Adder

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a circuit thus
has two inputs that represent the two bits to be added and two outputs, with one producing the
SUM output and the other producing the CARRY. Figure shows the truth table of a half-adder,
showing all possible input combinations and the corresponding outputs.

The Boolean expressions for the SUM and CARRY outputs are given by the equations

SUM S =A.B+A.B
CARRY C=A.B

An examination of the two expressions tells that there is no scope for further simplification.
While the first one representing the SUM output is that of an EX-OR gate, the second one
representing the

A— ——S
Half
Adder

B—— ——C

- = O O(>
o - a ol|lwm
- o o oln

Figure Truth table of a half-adder.

Figure Logic implementation of a half-adder.

103

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

CARRY output is that of an AND gate. However, these two expressions can certainly be
represented in different forms using various laws and theorems of Boolean algebra to illustrate
the flexibility that the designer has in hardware-implementing as simple a combinational
function as that of a half-adder. Although the simplest way to hardware-implement a half-adder
would be to use a two-input EX-OR gate for the SUM output and a two-input AND gate for the
CARRY output, as shown in Fig., it could also be implemented by using an appropriate
arrangement of either NAND or NOR gates. Figure shows the implementation of a half-adder
with NAND gates only.

A close look at the logic diagram of Fig. reveals that one part of the circuit implements a two-
input EX-OR gate with two-input NAND gates. The AND gate required to generate CARRY
output is implemented by complementing an already available NAND output of the input
variables.

2.4 Full Adder

A full adder circuit is an arithmetic circuit block that can be used to add three bits to produce a
SUM and a CARRY output. Such a building block becomes a necessity when it comes to
adding binary numbers with a large number of bits. The full adder circuit overcomes the
limitation of the

half-adder, which can be used to add two bits only. Let us recall the procedure for adding larger
binary numbers. We begin with the addition of LSBs of the two numbers. We record the sum
under the LSB column and take the carry, if any, forward to the next higher column bits. As a
result, when we add the next adjacent higher column bits, we would be required to add three
bits if there were a carry from the previous addition. We have a similar situation for the other
higher column bits

.
.

A

— D :

Figure Half-adder implementation using NAND gates.
104

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

A B Cn SUM(S) Cou
) 0 0) 0
A S 0 0 1 1 0
Full 0 1 0 1 0
B Adder 0 1 1 0 1
C c 1 0 0 1 0
" out 1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure Truth table of a full adder.

also until we reach the MSB. A full adder is therefore essential for the hardware implementation
of an adder circuit capable of adding larger binary numbers. A half-adder can be used for
addition of LSBs only.

Figure shows the truth table of a full adder circuit showing all possible input combinations and
corresponding outputs. In order to arrive at the logic circuit for hardware implementation of a
full adder, we will firstly write the Boolean expressions for the two output variables, that is, the
SUM and CARRY outputs, in terms of input variables.

||
= |

S=AB.C,+A.B.C\y+AB.Cy+A.B.Cy
B.C

i ABCu+ABCy+ABCy

Il
= |

(OU

The next step is to simplify the two expressions. We will do so with the help of the Karnaugh
mapping technique. Karnaugh maps for the two expressions are given in Fig. As is clear from
the two maps, the expression for the SUM (S) output cannot be simplified any further, whereas
the simplified Boolean expression for C,, is given out by the equation

Co = B.Cy +A.B+A.Cyy

Figure shows the logic circuit diagram of the full adder. A full adder can also be seen to
comprise two half-adders and an OR gate. The expressions for SUM and CARRY outputs can
be rewritten as follows:

S =Ci-(A.B+ A.B)+Cyp.(A.B+A.B)

%
S=C;,.(A.B+AB)+C,.(A.B+A.B)

Similarly, the expression for CARRY output can be rewritten as follows:

105

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Cou =B.Cp-(A+A)+ A.B+A.C,.(B+B) -
= AB+ABC ‘l‘ABC ‘f‘A.B.C‘m +A'§'C‘iﬂ = AB+ABC]H+ABCI]1+AE(—IH

mn n

=AB.(1+C,)+C,.(A.B+A.B)

AB Cin C|n
AB 1
AB 1
AB 1
AB 1

(a)
Cin e

AB Cin Cin
AB
AB 1
AB| [1 1
AB 1

Figure Karnaugh maps for the sum and carry-out of a full adder.

Cou = A'B_'_Cjn-(zxg"_r‘l.ﬁ)

Boolean expression can be implemented with a two-input EX-OR gate provided that one of the
inputs is C and the other input is the output of another two-input EX-OR gate with A and Bin as
its inputs. Similarly, Boolean expression can be implemented by ORing two minterms. One of
them is the AND output of A and B. The other is also the output of an AND gate whose inputs
are Cand the output of an EX-OR operation on A and B. The whole idea of writing the Boolean
in expressions in this modified form was to demonstrate the use of a half-adder circuit in
building a full adder.

The full adder of the type described above forms the basic building block of binary adders.
However, a single full adder circuit can be used to add one-bit binary numbers only. A cascade
arrangement of these adders can be used to construct adders capable of adding binary numbers
with a larger number of bits. For example, a four-bit binary adder would require four full adders
of the type shown in Fig. to be connected in cascade. Figure shows such an arrangement. (Aj,
A2, Al, A0) and (B;, B2, B1, B0) are the two binary numbers to be added, with A, and B,
representing LSBs and Aj; and B; representing MSBs of the two numbers.

106

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

J U U U

—

a)

D
B
B
Cout
Cin
D
Cin

Figure Logic circuit diagram of a full adder.
2.5 Half-Subtractor

A half-subtractor is a combinational circuit that can be used to subtract one binary digit from
another to produce a DIFFERENCE output and a BORROW output. The BORROW output
here specifies whether a ‘1’ has been borrowed to perform the subtraction. The truth table of a
half-subtractor, as shown in Fig., explains this further. The Boolean expressions for the two
outputs are given by the equations

107

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Cin
(@)
C-
in Half [som S
Adder _
Sum Carry
A Half c
Adder aut
Carry
(b)
Figure Logic implementation of a full adder with half-adders.
Ag Ag Aq Ag
i I I A N
FA FA FA FA [—Cjp
Cout S3 S2 31 So
Figure Four-bit binary adder.
D=AB+AB
B,=A.B
108

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

It is obvious that there is no further scope for any simplification of the Boolean expressions
given by above Equations. While the expression for the DIFFERENCE (D) output is that of

A B D Bg
A—> L »D=A-B 0 0 0 0
Halt 0 1 1 1
Subtractor
1 1 0 0

Figure Half-subtractor.

S S—
_>07: .

Figure Logic diagram of a half-subtractor.

an EX-OR gate, the expression for the BORROW output (By) is that of an AND gate with input
A complemented before it is fed to the gate. Figure shows the logic implementation of a half-
subtractor. Comparing a half-subtractor with a half-adder, we find that the expressions for the
SUM and DIFFERENCE outputs are just the same. The expression for BORROW in the case of
the half-subtractor is also similar to what we have for CARRY in the case of the half-adder. If
the input A, that is, the minuend, is complemented, an AND gate can be used to implement the
BORROW output.

2.6 Full Subtractor

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and
also takes into consideration whether a ‘1° has already been borrowed by the previous adjacent
lower minuend bit or not. As a result, there are three bits to be handled at the input of a full
subtractor, namely the two bits to be subtracted and a borrow bit designated as Bj,. There are
two outputs, namely the DIFFERENCE output D and the BORROW output B,. The BORROW
output bit tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher
minuend bit.

The Boolean expressions for the two output variables are given by the equations

109

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Minuend | Subtrahend Borrow | Difference | Borrow

(A) (B) In (Bin) (D) Out (Bo)
[i] 0 0 0 0
0 0 1 1 1
A —— i D 0 1 0 1 1
B ——— 0 1 1 0 1
Bin Subtractor o] 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Figure Truth table of a full subtractor.

(b)

Figure Karnaugh maps for difference and borrow outputs.

110

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

The Karnaugh maps for the two expressions are given in Fig. As is clear from the two
Karnaugh maps, no simplificationis possible for the difference output D. The simplified
expression for By is given by the equation

B,=A.B+A.B,+B.B,

HS
A— A D A Bo

HS
B——8 B AD_‘B

(b)

Figure Logic implementation of a full subtractor with half-subtractors.

If we compare these expressions with those derived earlier in the case of a full adder, we find
that the expression for DIFFERENCE output D is the same as that for the SUM output. Also,
the expression for BORROW output By is similar to the expression for CARRY-OUT C,. In the
case of a half-subtractor, the A input is complemented. By a similar analysis it can be shown
that a full subtractor can be implemented with half-subtractors in the same way as a full adder
was constructed using half-adders.

Again, more than one full subtractor can be connected in cascade to perform subtraction on two
larger binary numbers.

2.7 Parallel Adder—Subtractor

Subtraction of two binary numbers can be accomplished by adding 2’s complement of the
subtrahend to the minuend and disregarding the final carry, if any. If the MSB bit in the result
of addition is

111

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Az Ba Ao Bo Aq B1 Ag Bo

I | I
* + + SuB
[J_L) (l_L] (L_J,)
A B A B A B A B
FA Cinf=—Cp FA Cinf=— Cg FA Cinf—{Cp FA Cinf~—
|
D3 Dy D4 Dg

a ‘0, then the result of addition is the correct answer. If the MSB bit is a ‘1°, this implies that
the answer has a negative sign. The true magnitude in this case is given by 2’s complement of
the result of addition.

Full adders can be used to perform subtraction provided we have the necessary additional
hardware to generate 2’s complement of the subtrahend and disregard the final carry or
overflow. Figure shows one such hardware arrangement. Let us see how it can be used to
perform subtraction of two four-bit binary numbers. A close look at the diagram would reveal
that it is the hardware arrangement for a four-bit binary adder, with the exception that the bits of
one of the binary numbers are fed through controlled inverters. The control input here is
referred to as the SUB input. When the SUB input is in logic ‘0’ state, the four bits of the binary
number (B; B, B; By) are passed on as such to the B inputs of the corresponding full adders.
The outputs of the full adders in this case give the result of addition of the two numbers. When
the SUB input is in logic ‘1’ state, four bits of one of the numbers, (B; B, B; By) in the present
case, get complemented. If the same ‘1’ is also fed to the CARRY-IN of the LSB full adder,
what we finally achieve is the addition of 2°s complement and not 1’s complement. Thus, in the
adder arrangement of Fig., we are basically adding 2’s complement of (B; B, B, By) to (A3 A,
A Ay). The outputs of the full adders in this case give the result of subtraction of the two
numbers. The arrangement shown achieves A — B. The final carry (the CARRY-OUT of the
MSB full adder) is ignored if it is not displayed.

For implementing an eight-bit adder—subtractor, we will require eight full adders and eight two-
input EX-OR gates. Four-bit full adders and quad two-input EX-OR gates are individually
available in integrated circuit form. A commonly used four-bit adder in the TTL family is the
type number 7483. Also, type number 7486 is a quad two-input EX-OR gate in the TTL family.

2.8 Carry Propagation—Look-Ahead Carry Generator

The four-bit binary adder described in the previous pages can be used to add two four-bit binary
numbers. Multiple numbers of such adders are used to perform addition operations on larger-bit
binary numbers. Each of the adders is composed of four full adders (FAs) connected in cascade.
The block schematic arrangement of a four-bit adder is reproduced in Fig. for reference and

112

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

further discussion. This type of adder is also called a parallel binary adder because all the bits of
the augend and addend are present and are fed to the full adder blocks simultaneously.
Theoretically, the addition operation in various full adders takes place simultaneously. What is
of importance and interest to users, more so when they are using a large number of such adders
in their overall computation system, is whether the result of addition and carry-out are available
to them at the same time. In other words, we need to see if this addition operation is truly
parallel in nature. We will soon see that it is not. It is in fact limited by what is known as carry
propagation time. Here, C; and C;jare the input and output CARRY; P; andG; are two new
binary variables called CARRY PROPAGATE and CARRY GENERATE and will beaddressed
a little later.

For i=1, the diagram in Fig. (b) is that of the LSB full adder of Fig.(a). We can see here that C,,
which is the output CARRY of FA (1) and the input CARRY for FA (2), will appear at the
output aftera minimum of two gate delays plus delay due to the half adder after application of
A;, B; and C; inputs.

A4 Ag Ao Aq
r o o7
FA C4 FA Cs3 FA Co FA | Ct
4) (3) 2 (1
Cg S4 S3 So Sq

(a)

Cis1

Figure Four-bit binary adder.

The steady state of C, will be delayed by two gate delays after the appearance of C,. Similarly,
C; and C4 steady state will be four and six gate delays respectively after C,. And final carry Cs
will appear after eight gate delays.

113

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Extending it a little further, let us assume that we are having a cascade arrangement of two four-
bit adders to be able to handle eight-bit numbers. Now, Cs will form the input CARRY to the
second four-bit adder. The final output CARRY C, will now appear after 16 gate delays. This
carry propagation delay limits the speed with which two numbers are added. The outputs of any
such adder arrangement will be correct only if signals are given enough time to propagate
through gates connected between input and output. Since subtraction is also an addition process
and operations like multiplication and division are also processes involving successive addition
and subtraction, the time taken by an addition process is very critical.

One of the possible methods for reducing carry propagation delay time is to use faster logic
gates.

But then there is a limit below which the gate delay cannot be reduced. There are other
hardware- related techniques, the most widely used of which is the concept of look-ahead carry.
This concept attempts to look ahead and generate the carry for a certain given addition
operation that would otherwise have resulted from some previous operation. In order to explain
the concept, let us define two new binary variables: P; called CARRY PROPAGATE and G;
called CARRY GENERATE. Binary variable G; is so called as it generates a carry whenever A;
and B; are ‘1’. Binary variable P; is called CARRY PROPAGATE as it is instrumental in
propagation of C; to Ci;;. CARRY, SUM, CARRY GENERATE and CARRY PROPAGATE
parameters are given by the following expressions:

‘Dr' = Ar’ EBBJ
G,=A;.B,
51' — ‘Dr' % (-r

C'I-l = PICE_FGJ

]

In the next step, we write Boolean expressions for the CARRY output of each full adder stage
in the four-bit binary adder. We obtain the following expressions:

C_]=G|+P|.'C‘[

(_—I4:(_;3+P_1.':‘_-l; :Gq+P1LUJ+PJU|+P|P:{|}
(~4=G_Q+P3.GJ+P].F2.U| +PI.F3,P3.Cl

From the expressions for C,, C; and Cj it is clear that C4 need not wait for C; and C, to
propagate. Similarly, C; does not wait for C, to propagate. Hardware implementation of these

114

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

expressions gives us a kind of look-ahead carry generator. A look-ahead carry generator that
implements the above expressions using AND-OR logic is shown in Fig.

Figure shows the four-bit adder with the look-ahead carry concept incorporated. The block
labelled look-ahead carry generator is similar to that shown in Fig. The logic gates shown to
the left of the block represent the input half-adder portion of various full adders constituting the
four-bit adder. The EX-OR gates shown on the right are a portion of the output half-adders of
various fulladders.

All sum outputs in this case will be available at the output after a delay of two levels of logic
gates. 74182 is a typical look-ahead carry generator IC of the TTL logic family. This IC can be
used to generate relevant carry inputs for four four-bit binary adders connected in cascade to
perform operation on two 16-bit numbers. Of course, the four-bit adders should be of the type
so as to produce CARRY GENERATE and CARRY PROPAGATE outputs. Figure shows the
arrangement. In the figure shown, C, is the CARRY input, Gy, G;, G, and G; are CARRY
GENERATE inputs for 74182 and Py, P,, P, and P; are CARRY PROPAGATE inputs for
74182. Cpiy, ChiyandC,,are the CARRY outputs generated by 74182 for the four-bit adders.
The G and P outputs of 74182 need to be cascaded.

P3

P2
G2

P1

G1
C1

115

AllAbtEngg Android Application for Anna University, Polytechnic & School

A4

www.AllAbtEngg.com

Figure Look-ahead carry generator.

B4

A3

C4

B3

Az

C3

Look Ahead
Carry Generator

B2

A

Cz

B1

C1

Cs
P4
P3

D

P2

S

P1

) >

Figure Four-bit full adder with a look-ahead carry generator.

Cn 4-Bit 4-Bit 4-Bit 4-Bit Adder
cn Adder cn Adder cn Adder Cn Crivil—
G G P G P G P
Cn+x G P1 Cp+wy G2 P2 Cnez
Fo G3
G0 Look Ahead
Carry Generator Pa
Cn
G P

116

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Figure IC 74182 interfaced with four four-bit adders.
2.9 Magnitude Comparator

A magnitude comparator is a combinational circuit that compares two given numbers and
determines whether one is equal to, less than or greater than the other. The output is in the form
of three binary variables representing the conditions A =B A > B and A <B, if A and B are the
two numbers being compared. Depending upon the relative magnitude of the two numbers, the
relevant output changes state. If the two numbers, let us say, are four-bit binary numbers and
are designated as (A3 A, A; Ay) and (B; B, B; By), the two numbers will be equal if all pairs of
significant digits are equal, that is, A; = B; , A, = B, A; = By and Ay = By . In order to
determine whether A is greater than or less than B we inspect the relative magnitude of pairs of
significant digits, starting from the most significant position. The comparison is done by
successively comparing the next adjacent lower pair of digits if the digits of the pair under
examination are equal. The comparison continues until a pair of unequal digits is reached. In the
pair of unequal digits, if A;= 1 and B; =0, then A> B, and if A;=0,B;=1then A<B.IfX, Y
and Z are three variables respectively representing the A = B, A > Band A < B conditions, then
the Boolean expression representing these conditions are given by the equations

X =x3.a0.x.x; where x;, = A, B, + ALB,

Y = A3.By+x3.42.B, + x3.5.A1.B) + x3.350.x1. A By

Fi— EH:. + .*.'_'.,.A_:.H: - X3.X7 .i"l_| H| + X3.X7 X IH”
Let us examine equation. x; will be ‘1’ only when both A; and B; are equal. Similarly,
conditions for X, , X; and x, to be ‘1’ respectively are equal A, and B, , equal A, and B, and

equal Ay and ByANDing of x3 , X, , X; and X, ensures that X will be ‘1” when x; , X; , x; and X
are in the logic 1’state. Thus, X = 1 means that A = B.

117

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Az

}.

=
St
=

00 O
y

[A=B)
o

DTl
. «
Ag) : I (A>B)
P
B } +H
arp

Figure Four-bit magnitude comparator.

Magnitude comparators are available in IC form. For example, 7485 is a four-bit magnitude
comparator of the TTL logic family. IC 4585 is a similar device in the CMOS family. 7485 and
4585 have the same pin connection diagram and functional table. The logic circuit inside these
devices determines whether one four-bit number, binary or BCD, is less than, equal to or
greater than a second four-bit number. It can perform comparison of straight binary and straight
BCD (8-4-2-1) codes. These devices can be cascaded together to perform operations on larger
bit numbers without the help of any external gates. This is facilitated by three additional inputs
called cascading or expansion inputs available on the IC. These cascading inputs are also
designated as A = B, A > B and A < B inputs. Cascading of individual magnitude comparators
of the type 7485 or 4585 is discussed in the following paragraphs. IC 74AS885 is another
common magnitude comparator. The device is an eight- bit magnitude comparator belonging to
the advanced Schottky TTL family. It can perform high-speed arithmetic or logic comparisons
on two eight-bit binary or 2’s complement numbers and produces two fully decoded decisions
at the output about one number being either greater than or less than the other. More than one of
these devices can also be connected in a cascade arrangement to perform comparison of
numbers of longer lengths.

118

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

2.10 BCD Adder

A BCD adder is used to perform the addition of BCD numbers. A BCD digit can have any of
the ten possible four-bit binary representations, that is, 0000, 0001,..., 1001, the equivalent of
decimal numbers 0, 1,..., 9. When we set out to add two BCD digits and we assume that there is
an input carry too, the highest binary number that we can get is the equivalent of decimal
number 19 (9 +9+1).

A A Ag A B B R B
3 1251 70 3 2 1 0 Control Input
0'or 1
1| 2 4|51 g|10] 12| T3
7486
3 6 8 1
1 3 & 10 16 4 7 11
7483 13
15 2 6 g
53 Sz 5q Sp

Figure Four-bit adder-subtractor.

This binary number is going to be (10011),. On the other hand, if we do BCD addition, we
would expect the answer to be (0001 1001)gcp. And if we restrict the output bits to the
minimum required, the answer in BCD would be (1 1001)pcp. Table lists the possible results in
binary and the expected results in BCD when we use a four-bit binary adder to perform the
addition of two BCD digits. It is clear from the table that, as long as the sum of the two BCD
digits remains equal to or less than 9, the four-bit adder produces the correct BCD output.

The binary sum and the BCD sum in this case are the same. It is only when the sum is greater
than 9 that the two results are different. It can also be seen from the table that, for a decimal
sum greater than 9 (or the equivalent binary sum greater than 1001), if we add 0110 to the

119

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

binary sum, we can get the correct BCD sum and the desired carry output too. The Boolean
expression that can apply the necessary correction is written as

C: .-'5‘.'+2:.23+Z;.Z|

Equation implies the following. A correction needs to be applied whenever K = 1. This takes
care of the last four entries. Also, a correction needs to be applied whenever both Z; and Z, are
‘1°. This takes care of the next four entries from the bottom, corresponding to a decimal sum
equal to

Table Results in binary and the expected results in BCD using a four-bit binary adder to
perform the addition of two BCD digits.

Decimal sum Binary sum BCD sum
K Zs Z; Z Z, 2 5, 5 Ry 5,
0 0 0l 0 0 0 0 0 0 0 0
1 0 0l 0 0 I 0 0 0 0 I
2 0 0 0 I 0 0 0 0 I 0
3 0 0 0 I I 0 0 0 1 l
4 1] 0 1 0 0 0 0 1 0 0
3 0] 1 0 I 0 0 1] I
6 0 0 | 1 0 0 0 1 I 0
7 0 0 1 | I 0 0 1 I I
8 0 I 0 0 0 0 1 0 0 0
49 i I 0 0 I 0 1 0] I
0 0 I 0 | 0 | 0 0] 0
11 1] I 0 1 I 1 0 0] I
i2 0 I 1 0 0 1 0 0 I 0
I3 0 I 1 0 I | 0 0 ! L
14 0 I 1 I] | 0 1 0 0
i5 0 I 1 I I 1 0 |] I
3 1] 0 0] | 0 1 I 0
17 1 0 0 0 I | 0 1 I I
I8 1 0 0 | 0 1 1 0 0 0
i9 1 0 0 | I 1 1 0 0 I

12, 13, 14 and 15. For the remaining two entries corresponding to a decimal sum equal to 10
andl1, a correction is applied for both Z; and Z, , being ‘1°. While hardware-implementing,
0110 can be added to the binary sum output with the help of a second four-bit binary adder. The
correction logic as dictated by the Boolean expression should ensure that (0110) gets added
only when the above expression is satisfied. Otherwise, the sum output of the first binary adder
should be passed on as such to the final output, which can be accomplished by adding (0000) in
the second adder. Figure shows the logic arrangement of a BCD adder capable of adding two
BCD digits with the help of two four-bit binary adders and some additional combinational
logic.

120

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

The BCD adder described in the preceding paragraphs can be used to add two single-digit BCD
numbers only. However, a cascade arrangement of single-digit BCD adder hardware can be
used to perform the addition of multiple-digit BCD numbers. For example, an n-digit BCD
adder would require n such stages in cascade. As an illustration, Fig. shows the block diagram
of a circuit for the addition of two three-digit BCD numbers. The first BCD adder, labelled LSD
(Least Significant Digit), handles the least significant BCD digits. It produces the sum output
(S5 Sz S Sp), which is the BCD code for the least significant digit of the sum. It also produces
an output carry that is fed as an input carry to the next higher adjacent BCD adder. This BCD
adder produces the sum output (S; S¢ S5 S4), which is the BCD code for the second digit of the
sum, and a carry output. This output carry serves as an input carry for the BCD adder
representing the most significant digits. The sum outputs (S1; Sjo Sy Sg) represent the BCD code
for the MSD of the sum.

BCD Digit-1 BCD Digit-2

i

K 4-Bit Binary Adder jo Camy
23 Z'_g 21 ZU

4-Bit Binary Adder T

Figure Single-digit BCD adder.

121

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

B11 BypBy Bla p\.ﬂ Ainhs Ag Br Bg Bs By Ay Ag As A By Bp By By Az A Ay A

ey BCD BCD BCD
«—C ADDER Ciy —| C ADDER C. cC ADDER Cin —
(MSD) (LSD)
S11 S105p S S7 55 85 84 S; 5; 8 5y

Figure Three-digit BCD adder.
2.11 Multiplexer

A multiplexer or MUX., also called a data selector, is a combinational circuit with more than one
input line, one output line and more than one selection line. There are some multiplexer 1Cs that
provide complementary outputs. Also, multiplexers in IC form almost invariably have an ENABLE
or STROBE input, which needs to be active for the multiplexer to be able to perform its intended
function. A multiplexer selects binary information present on any one of the input lines. depending
upon the logic status of the selection inputs, and routes it to the output line. If there are n selection lines,
then the number of maximum possible input lines is 2" and the multiplexer is referred to as a 2"-to-1
multiplexer or 2" x | multiplexer. Figures (a) and (b) respectively show the circuit representation
and truth table of a basic 4-to-1 multiplexer.

4-to-1
Mux OP Y

(a)

X4 Xp Y
0 0)
0 1 l4
1 0 Iz
1 1 2

(b)
122

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Figure (a) 4-to-1 multiplexer circuit representation and (b) 4-to-1 multiplexer truth table.

8-to-1
MUX

(@)

Inputs Output

Select Enable
C| B| A G Y W
X % X H L H
il L | L L Do D0
L|L|H L D1 Di
L | B L L D2 D2
L|H|H [D3 D3
H|L|L L D4 D4
H| L|H L D5 D5
H|H|L L Dé Deé
H{H|H L | D7 D7

G : ENABLE input

A, B, C: Select inputs
D0-D7 : Data inputs
Y,W : outputs

(b)

Figure (a) 8-to-1 multiplexer circuit representation and (b) 8-to-1 multiplexer truth table.

OO W O

DO —

D2 —
D3 —
D4 —
D5 —
D6 —
D7 —

D10—
D11 —
Di2—
D13—]
Di4—

D15—]

16-to-1
MUX

Inputs

Select Enable W

e}

— W

I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_IQ|
o
+7]

@ e B Bha Be0a siiga Biie vila ol el redl il ol el ol - <l =
I wifin wiza oiile ol wel el radll padtn il ndia oiia val el nall el ol

Lot R E I r EE r r |
T I I I EreIr e

123

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Figure (a) 16-to-1 multiplexer circuit representation and (b) 16-to-1 multiplexer truth
table.

2.11.1 Inside the Multiplexer

We will briefly describe the type of combinational logic circuit found inside a multiplexer by
considering the 2-to-1 multiplexer in Fig. (a), the functional table of which is shown in Fig.

(b). Figure (c) shows the possible logic diagram of this multiplexer. The circuit functions as
follows:

® For § =0, the Boolean expression for the output becomes Y = /.
e For § =1, the Boolean expression for the output becomes ¥ = /,.

Thus, inputs /; and [, are respectively switched to the output for § =0 and § = 1. Extending the
concept further, Fig. shows the logic diagram of a 4-to-1 multiplexer. The input combinations 00,
01, 10 and 11 on the select lines respectively switch [y, f,, [; and [; to the output.

Y =15.8.8+ 4886+ 188 + 1.8, 8

¥ =15 85.81: 8411558, Sy By 85818y 4 B:85:51:85 4 1;:85:81:8p
+15.5,.8,.8y + 15.8,.5,.85y + 17.5,.5,.5

[} lo
1 1q

B}

I

(=]

Figure (a) 2-to-1 multiplexer circuit representation, (b) 2-to-1 multiplexer truth table and
(c) 2-to-1 multiplexer logic diagram.

124

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

000
;

[= = |
= T |
I &

Figure Logic diagram of a 4-to-1 multiplexer.

As outlined earlier, multiplexers usvally have an ENABLE inpul that can be used to control the
multiplexing function. When this input is enabled, that is, when il is in logic ‘17 or logic ‘0 state,
depending upon whether the ENABLE input is active HIGH or active LOW respectively, the output
15 enabled. The multiplexer functions normally. When the ENABLE 1input 1s inactive, the outpul is
disabled and permanently goes Lo either logic *0° or logic ‘1 state, depending upon whether the output
is uncomplemented or complemented. Figure 8.6 shows how the 2-to-1 multiplexer of Fig. can
be modified to include an ENABLE input. The functional table of this modified multiplexer is also
shown in Fig. The ENABLE input here is active when HIGH. Some IC packages have more than
one multiplexer. In that case, the ENABLE input and selection inputs are common to all multiplexers
within the same IC package.

(D

= o x|
n.h-bcjg
-

Figure 2-to-1 multiplexer with an ENABLE input.

125

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

2.11.2 Implementing Boolean Functions with Multiplexers

One of the most common applications of a multiplexer is its use for implementation of combinational
logic Boolean functions. The simplest technique for doing so is to employ a 2"-to-1 MUX to implement
an n-variable Boolean function. The input lines corresponding to each of the minterms present in the
Boolean function are made equal to logic 1" state. The remaining minterms that are absent in the
Boolean function are disabled by making their corresponding input lines equal to logic ‘0'. As an

example, Fig. {a) shows the use of an 8-to-1 MUX for implementing the Boolean function given
by the equation

f(A.B,C)=Y2,4.7

y —)
-
4
b H
- J
Hj 51 Sy EN Y
X X 1 0
& . 0 0 0 |
— 0 1 0 l
' 0 0 |h
l»—Zl& ¥ A& 1 1 0 |3
S 8 EN

Figure 4-to-1 multiplexer with an ENABLE input.

126

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

As shown in Fig. the input lines corresponding to the three minterms present in the given Boolean
function are tied to logic *1°. The remaining five possible minterms absent in the Boolean function are
tied to logic ‘0.

However, there is a better technique available for doing the same. In this, a 2"-to-1 MUX can be
used to implement a Boolean function with n + 1 variables. The procedure is as follows. Out of n +
1 variables, n are connected to the n selection lines of the 2"-to-1 multiplexer. The left-over variable
is used with the input lines. Various input lines are tied to one of the following: *0°, *1°, the left-over
variable and the complement of the left-over variable. Which line is given what logic status can be
easily determined with the help of a simple procedure.

It is a three-variable Boolean function. Conventionally, we will need to use an 8-to-1 multiplexer
to implement this function. We will now see how this can be implemented with a 4-to-1 multiplexer.
The chosen multiplexer has two selection lines.

In the next step, two of the three variables are connected to the two selection lines, with the higher-
order variable connected to the higher-order selection line. For instance, in the present case, variables
B and C are the chosen variables for the selection lines and are respectively connected to selection
lines §, and ;. In the third step, a table of the type shown in Table is constructed. Under the inputs
to the multiplexer, minterms are listed in two rows, as shown. The first row lists those terms where
remaining variable A is complemented, and second row lists those terms where A is uncomplemented.
This is easily done with the help of the truth table.

The required minterms are identified or marked in some manner in this table. In the given
table. these entries have been highlighted. Each column is inspected individually. If neither minterm
of a certain column is highlighted. a ‘0" is written below that. If both are highlighted, a *I’ is

lo .
I4 -
l2
l3—s
lg—1 8-to-1 E
I5—4 MUX
lg—s
I
7 ABGC
(a)
Ig
" 4101 E
Ao—{> 12 mux
I3
S1 Sp
B C
(b)

Figure Hardware implementation of the Boolean function given by equation

127

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Truth table.
Minterm A B C fABC)
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
+ 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1

written. If only one is highlighted. the corresponding variable (complemented or uncomplemented)
is written. The input lines are then given appropriate logic status. In the present case. [, [,
I, and I, would be connected to A, 0, A and A respectively. Figure (b) shows the logic
implementation.

Table Implementation table for multiplexers.

I I I, I

A 0 1 2 3
A 4 5 6 7
0 A A

Table Implementation table for multiplexers.

I I, A 1
€ 0 2 4 6
c | 3 5 7
0 e c (3

It is not necessary to choose only the leftmost variable in the sequence to be used as input to
the multiplexer. Any of the variables can be used provided the implementation table is constructed
accordingly. In the problem illustrated above, A was chosen as the variable for the input lines,
and accordingly the first row of the implementation table contained those entries where ‘A’ was
complemented and the second row contained those entries where A was uncomplemented. If we
consider C as the left-out variable, the implementation table will be as shown in Table

128

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

" 410-1 C
2 mux

c 51 Sp

Figure Hardware implementation using a 4-to-1 multiplexer.

Table Implementation table for multiplexers.

I I, 3 I
B 0 1 4 5
B 2 3 6 7
B 0 B B

Example

Implement the producit-of-sums Boolean function expressed by 111,25 by a suitable multiplexer.

Saolution
e [et the Boolean function be f(A.B.C)=]]1.2.5.
® The equivalent sum-of-products expression can be written as f(A.B.C)=30,3.4.6,7.

The truth table for the given Boolean function is given in Table The given function can be
implemented with a 4-to-1 multiplexer with two selection lines. Variables A and B are chosen for the
selection lines. The implementation table as drawn with the help of the truth table is given in Table

Table Truth table.

C B 1 fAAB.C)
0 0 0 1
0 0 1 0
0 | 0 0
0 1 1 1
1 0 0 1
1 0 1 0
I 1 0 1
1 1 1 1

129

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Table Implementation table.
Iy I Iy Iy
C 0 1 2 3
(B 4 5 6 7
1 0 C |
I-!‘
L] IG
0 N at041 F
@ 2 mux
I3
S1_So
B
A
Figure Example

Mo

giitiiil

D
ol l2laglalsls k7
C So
8-to-1
B B MUX
A—5p
Y

2.12 Encoders

An encoder is a multiplexer without its single output line. It is a combinational logic function that has
2" (or fewer) input lines and » output lines. which correspond to n selection lines in a multiplexer.
The n output lines generate the binary code for the possible 2" input lines. Let us take the case of an
octal-to-binary encoder. Such an encoder would have eight input lines, each representing an octal digit,
and three output lines representing the three-bit binary equivalent. The truth table of such an encoder
is given in Table In the truth table, D, to D, represent octal digits O to 7. A, B and C represent
the binary digits.

130

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

s

LLY

<]
&
|

8-to-1

=
(=
=

Peg mT ———

The eight input lines would have 2® = 256 possible combinations. However. in the case of an
octal-to-binary encoder. only eight of these 256 combinations would have any meaning. The remaining
combinations of input variables are ‘don’t care’ input combinations. Also, only one of the input lines
at a time is in logic ‘1" state. Figure shows the hardware implementation of the octal-to-binary
encoder described by the truth table in Table . This circuit has the shortcoming that it produces an
all Os output sequence when all input lines are in logic ‘0" state. This can be overcome by having an
additional line to indicate an all Os input sequence.

2.12.1 Priority Encoder

A priority encoder is a practical form of an encoder. The encoders available in IC form are all
priority encoders. In this type of encoder. a priority is assigned to each input so that, when more
than one input is simultaneously active, the input with the highest priority is encoded. We will
illustrate the concept of priority encoding with the help of an example. Let us assume that the octal-
to-binary encoder described in the previous paragraph has an input priority for higher-order digits.
Let us also assume that input lines D;, D; and D; are all simultaneously in logic ‘1" state. In
that case. only D; will be encoded and the output will be 111. The truth table of such a priority

131

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Dp Dy D2 D3 Dg D5 Dg Dy

=

Q

Sj ¥ ?
w

Figure Octal-to-binary encoder.

Table Truth table of an encoder.

D, D, D, D, D, D, D, Dy A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 |

0 0 1 0 0] 0 0 0 1 0

0] 0 1 0 0 0 0 0 1 1

] 0 0 0 | 0 0 0 1 0 0

0] 0 0 0 1] 0 1 0 1

0 0 0 0 0] 1 0 l 1 0

0 0 0 0 0 0 0 1 1 1 1
encoder will then be modified to what is shown in Table Looking at the last row of the
table, it implies that. if D; = 1, then, irrespective of the logic status of other inputs, the output is
111 as D; will only be encoded. As another example. Fig. shows the logic symbol and truth

table of a 10-line decimal to four-line BCD encoder providing priority encoding for higher-order
digits. with digit 9 having the highest priority. In the functional table shown, the input line with
highest priority having a LOW on it is encoded irrespective of the logic status of the other input
lines.

132

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

Table Priority encoder.
D, D, D, D, D, D. D, D, A B 1
1 0 0 0 0 0 0 0 0 0 0
X 1 0 0 0 0 0 0 0 0 l
X X | 0 0 0 0 0 0 1 0
X X X 1 0 0 0 0 0 1 1
X X X X l 0 0 0 1 0 0
X X X X X 1 0 0 1 0 1
X X X X X X 1 0 I 1 0
X X X X X X X 1 l 1 l

——-

1i—o

s ek

i~ 9 toBCD o

6—— Encoder o

7— F— D

8—d

g—

Inputs Outputs
0 1 2 3 4 5 6 7 8 9 D Cc B A
X X X X X X X X X 0 0 1 1 1]
X X X X X X X X 0 1 0 1 1 1
X X X X X X X 0 1 1 1 0 0 0
X X X X X X 0 1 1 1 1 0 0 1
X X X X X 0 1 1 1 1 1 0 1 0
X X X X 0 1 1 1 1 1 1 0 1 1
X X X 0 1 1 1 1 1 1 1 1 0 0
X X 0 1 1 1 1 1 1 1 1 1 0 1
X 0 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1
Figure 10-line decimal to four-line BCD priority encoder.

Some of the encoders available in IC form provide additional inputs and outputs to allow expansion.
IC 74148, which is an eight-line to three -line priority encoder, is an example. ENABLE-IN (EI) and
ENABLE-OUT (EO) terminals on this IC allow expansion. For instance, two 74148s can be cascaded
to build a 16-line to four-line priority encoder.

133

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

2.13 Demultiplexers and Decoders

A demultiplexer is a combinational logic circuit with an input line, 2" output lines and » select lines. It
roules the information present on the input line to any of the output lines. The output line that gets the
information present on the input line is decided by the bit status of the selection lines. A decoder is a
special case of a demultiplexer without the input line. Figure (a) shows the circuil representation
of a l-to-4 demultiplexer. Figure (b) shows the truth table of the demuliiplexer when the input
line is held HIGH.

A decoder, as mentioned earlier. is a combinational circuil that decodes the information on n input
lines to a maximum of 2" unique output lines. Figure shows the circuil representation of 2-1o-4,
3-10-8 and 4-10-16 line decoders. If there are some unused or “don’t care’ combinations in the n-bit
code, then there will be fewer than 2* output lines. As an illustration, if there are three input lines. it

Dol—
/P line 1-to-4 Di——o
" DEMUX Dz} .

8] M—
A B
(@)

Select oP
W|alB]oojoroe|Ds
1 0 0 1 o 0 0
1 0 1 0 1 H 0
1 1 0 0] 0 1 0
1 1 1 0] 0 0 1

()
Figure l-to-4 demultiplexer.
134

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

0 A A 0
- 1

2-to-4 ; g 3to8 g 4-10-16
3 G D 15

Figure Circuit representation of 2-to-4, 3-10-8 and 4-to-16 line decoders.

can have a maximum of eight unigue output lines. If, in the three-bit input code, the only used three-bit
combinations are 000, 001, 010, 100, 110 and 111 (011 and 101 being either unused or don't care
combinations), then this decoder will have only six output lines. In general. if # and m are respectively
the numbers of input and output lines, then m = 27,

A decoder can generate a maximum of 2* possible minterms with an n-bit binary code. In order
o illustrate further the operation of a decoder. consider the logic circuit diagram in Fig. This
logic circuit, as we will see, implements a 3-to-8 line decoder function. This decoder has three inputs
designated as A, B and C and eight outputs designated as Dy, Dy, D, Ds. Dy, Ds, Dy and ;. From
the truth table given along with the logic diagram it is clear that, for any given input combination,
only one of the eight outputs is in logic ‘1" state. Thus, each output produces a certain minterm that
corresponds to the binary number currently present at the inpul. In the present case, Dy, Dy, D, Iy,
Dy, Ds. D, and Dy respectively represent the following minterms:

mil

B.

=

DD —

B.

il

D = ABC,D;,— ABC.D;—+ ABC
DS —* A C,

D, — AB. Dy;— ABC.D;— AB.C

2.13.1 Implementing Boolean Functions with Decoders

A decoder can be conveniently used to implement a given Boolean function. The decoder generales
the required minlerms and an external OR gale is used to produce the sum of minterms. Figure
shows the logic diagram where a 3-to-8 line decoder is used to generate the Boolean function given
by the equation

Y=ABC+ABC+ABC+AB.

In general. an n-to-2" decoder and m external OR gates can be used fo implement any combinational
circuit with n inputs and m outputs. We can appreciate that a Boolean function with a large number
of minterms, if implemented with a decoder and an external OR gate, would require an OR gaie
with an equally large number of inputs. Let us consider the case of implementing a four-variable
Boolean function with [2 minterms using a 4-to-16 line decoder and an external OR gate. The OR
pate here needs to be a 12-input gate. In all such cases, where the number of minterms in a given
Boolean function with n vanables is greater than 2%/2 {or 271y the complement Boolean function will
have fewer minterms. In that case it would be more advantageous Lo do NORing of minterms of the
complement Boolean function using a NOR gate rather than doing ORing of the given function using
an OR gate. The output will be nothing but the given Boolean function.

135

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

m
|

JUUUUUUU

ABC(Ds)

ABC(Dy)

ABCI(Ds)

ABT (Dg)

ABC (D7)

INPUTS

OUTPUTS

B

o
=

o

4

SRR~ e R =1
PR~ = P e

= 0O0=0=0=0|0)

COLOO QO =

GEQGGG—*’DE
QGQGQ—LQQ:\?
DDDD—*C.‘IDDL?
C:'G—*GOGDD(P

COQ 20000

G—‘GGGGGG‘E
—KGQGGGOG_‘?

=
E
"

Logic diagram of a 3-10-8 line decoder.

136

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

0 Lr
A 22 12 %
{ 308 3 o)
B 2 Decoder 4 i 7 ¥
0 . 2
[o pad
7 o
Figure Implementing Boolean functions with decoders.

2.13.2 Cascading Decoder Circuits

There can possibly be a situation where the desired number of input and output lines 15 not available
in IC decoders. More than one of these devices of a given size may be used to construct a decoder
that can handle a larger number of input and output lines. For instance, 3-t0-8 line decoders can be
used o construct 4-to- 16 or 5-to-32 or even larger decoder circuits. The basic steps (o be followed Lo
carry out the design are as follows:

1. I m 1s the number of input lines in the available decoder and N is the number of input lines in the
desired decoder, then the number of individual decoders required 1o construct the desired decoder
circuit would be 2%,

. Connect the less significant bits of the input lines of the desired decoder to the input lines of the

available decoder.

The left-over bits of the input lines of the desired decoder circuil are used to enable or disable the

individual decoders.

4. The output lines of the individual decoders together constitute the output lines, with the outputs of
the less significant decoder constituting the less significant outpul lines and those of the higher—
order decoders constituting the more significant output lines. The concept is further illustrated in
solved example 8.8, which gives the design of a 4-10-16 decoder vusing 3-to-8 decoders.

(]

l;.p.l

Example
fmplement a full adder circuit using a 3-10-8 line decoder.

Solution
A decoder with an OR pate at the output can be used to implement the given Boolean function. The
decoder should at least have as many inpul lines as the number of variables in the Boolean function
o be implemented. The truth table of the full adder 15 given in Table . and Fig. shows the
hardware implementation.

From the truth table, Boolean functions for SUM and CARRY outputs are given by the following
equations:

Sumoutput §=% 1,2.4.7
Carry output C, =X 3,5,6,7

137

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

0 0 I

Table Example

A B 54 N Cs
0 0] 0 0
0 0 I 1 0
0 1] 1 0
0 1 1 0 I

! 0 0 0

1

1

1

]

O —_
1
5
A 22 2
§ 308 3
B 2 Decoder 4
5
c 2"
[
= >
0
Figure Example

1. Define combinational logic.
When logic gates are connected together to produce a specified output for certain
specified combinations of input variables, with no storage involved, the resulting
circuit is called combinational logic.
2. Explain the design procedure for combinational circuits.
The problem definition
Determine the number of available input variables & required O/P
variables.
Truth Table Construction
Obtain simplified Boolean expression for each O/P (using K-Map).
Obtain the logic diagram.
3. Define Half adder and full adder
Half Adder: The logic circuit that performs the addition of two bits is a half adder.
Full Adder: The circuit that performs the addition of three bits is a full adder.
4. Define Decoder?
A decoder is a multiple - input multiple output logic circuit that converts coded inputs
into coded outputs where the input and output codes are different.
5. What is binary decoder?

138

AllAbtEngg Android Application for Anna University, Polytechnic & School

