
AllAbtEngg Android Application for Anna University, Polytechnic & School

UNIT II

COMBINATIONAL CIRCUITS

2. Combinational Circuits

 A combinational circuit is one where the output at any time depends only on the present
combination of inputs at that point of time with total disregard to the past state of the inputs.
The logic gate is the most basic building block of combinational logic. The logical function
performed by a combinational circuit is fully defined by a set of Boolean expressions. The other
category of logic circuits, called sequential logic circuits, comprises both logic gates and
memory elements such as flip-flops. Owing to the presence of memory elements, the output in a
sequential circuit depends upon not only the present but also the past state of inputs.

Figure shows the block schematic representation of a generalized combinational circuit having
n input variables and m output variables or simply outputs. Since the number of input variables
is

Figure Generalized combinational circuit.

n, there are 2n possible combinations of bits at the input. Each output can be expressed in terms
of input variables by a Boolean expression, with the result that the generalized system of
Fig.can be expressed by m Boolean expressions. As an illustration, Boolean expressions
describing the function of a four-input OR/NOR gate are given as

Also, each of the input variables may be available as only the normal input on the input line
designated for the purpose. In that case, the complemented input, if desired, can be generated by
using an inverter, as shown in Fig.(a), which illustrates the case of a four-input, two-output
combinational function. Also, each of the input variables may appear in two wires, one
representing the normal literal and the other representing the complemented one, as shown in
Fig.(b).

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

In combinational circuits, input variables come from an external source and output variables
feed an external destination. Both source and destination in the majority of cases are storage
registers, and these

Figure Combinational circuit with normal and complemented inputs.

Figure Two-input, four-output combinational circuit.

storage devices provide both normal as well as complemented outputs of the stored binary
variable. As an illustration, Fig. shows a simple two-input (A, B), four-output (Y1, Y2, Y3, Y4)
combinational logic circuit described by the following Boolean expressions

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The implementation of these Boolean expressions needs both normal as well as complemented
inputs. Incidentally, the combinational circuit shown is that of a half-adder subtractor, with A
and B representing the two bits to be added or subtracted and Y1,Y2,Y3,Y4 representing SUM,
DIFFERENCE, CARRY and BORROW outputs respectively.

2.1 Implementing Combinational Logic

The different steps involved in the design of a combinational logic circuit are as follows:

1. Statement of the problem.

2. Identification of input and output variables.

3. Expressing the relationship between the input and output variables.

4. Construction of a truth table to meet input output requirements.

5. Writing Boolean expressions for various output variables in terms of input variables.

6. Minimization of Boolean expressions.

7. Implementation of minimized Boolean expressions.

These different steps are self-explanatory. One or two points, however, are worth mentioning
here. There are various simplification techniques available for minimizing Boolean expressions.
These include the use of theorems and identities, Karnaugh mapping, the Quinne McCluskey
tabulation method and so on. Also, there are various possible minimized forms of Boolean
expressions. The following guidelines should be followed while choosing the preferred form for
hardware implementation:

1. The implementation should have the minimum number of gates, with the gates used having
the minimum number of inputs.

2. There should be a minimum number of interconnections, and the propagation time should be
the shortest.

3. Limitation on the driving capability of the gates should not be ignored.

It is difficult to generalize as to what constitutes an acceptable simplified Boolean expression.
The importance of each of the above-mentioned aspects is governed by the nature of
application.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.2 Arithmetic Circuits Basic Building Blocks

In this section, we will discuss those combinational logic building blocks that can be used to
perform addition and subtraction operations on binary numbers. Addition and subtraction are
the two most commonly used arithmetic operations, as the other two, namely multiplication and
division, are respectively the processes of repeated addition and repeated subtraction. We will
begin with the basic building blocks that form the basis of all hardware used to perform the
aforesaid arithmetic operations on binary numbers. These include half-adder, full adder, half-
subtractor, full subtractor and controlled inverter.

2.3 Half-Adder

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a circuit thus
has two inputs that represent the two bits to be added and two outputs, with one producing the
SUM output and the other producing the CARRY. Figure shows the truth table of a half-adder,
showing all possible input combinations and the corresponding outputs.

The Boolean expressions for the SUM and CARRY outputs are given by the equations

An examination of the two expressions tells that there is no scope for further simplification.
While the first one representing the SUM output is that of an EX-OR gate, the second one
representing the

Figure Truth table of a half-adder.

Figure Logic implementation of a half-adder.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

CARRY output is that of an AND gate. However, these two expressions can certainly be
represented in different forms using various laws and theorems of Boolean algebra to illustrate
the flexibility that the designer has in hardware-implementing as simple a combinational
function as that of a half-adder. Although the simplest way to hardware-implement a half-adder
would be to use a two-input EX-OR gate for the SUM output and a two-input AND gate for the
CARRY output, as shown in Fig., it could also be implemented by using an appropriate
arrangement of either NAND or NOR gates. Figure shows the implementation of a half-adder
with NAND gates only.

A close look at the logic diagram of Fig. reveals that one part of the circuit implements a two-
input EX-OR gate with two-input NAND gates. The AND gate required to generate CARRY
output is implemented by complementing an already available NAND output of the input
variables.

2.4 Full Adder

A full adder circuit is an arithmetic circuit block that can be used to add three bits to produce a
SUM and a CARRY output. Such a building block becomes a necessity when it comes to
adding binary numbers with a large number of bits. The full adder circuit overcomes the
limitation of the

half-adder, which can be used to add two bits only. Let us recall the procedure for adding larger
binary numbers. We begin with the addition of LSBs of the two numbers. We record the sum
under the LSB column and take the carry, if any, forward to the next higher column bits. As a
result, when we add the next adjacent higher column bits, we would be required to add three
bits if there were a carry from the previous addition. We have a similar situation for the other
higher column bits

Figure Half-adder implementation using NAND gates.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Truth table of a full adder.

also until we reach the MSB. A full adder is therefore essential for the hardware implementation
of an adder circuit capable of adding larger binary numbers. A half-adder can be used for
addition of LSBs only.

Figure shows the truth table of a full adder circuit showing all possible input combinations and
corresponding outputs. In order to arrive at the logic circuit for hardware implementation of a
full adder, we will firstly write the Boolean expressions for the two output variables, that is, the
SUM and CARRY outputs, in terms of input variables.

The next step is to simplify the two expressions. We will do so with the help of the Karnaugh
mapping technique. Karnaugh maps for the two expressions are given in Fig. As is clear from
the two maps, the expression for the SUM (S) output cannot be simplified any further, whereas
the simplified Boolean expression for Cout is given out by the equation

Figure shows the logic circuit diagram of the full adder. A full adder can also be seen to
comprise two half-adders and an OR gate. The expressions for SUM and CARRY outputs can
be rewritten as follows:

Similarly, the expression for CARRY output can be rewritten as follows:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Karnaugh maps for the sum and carry-out of a full adder.

Boolean expression can be implemented with a two-input EX-OR gate provided that one of the
inputs is C and the other input is the output of another two-input EX-OR gate with A and Bin as
its inputs. Similarly, Boolean expression can be implemented by ORing two minterms. One of
them is the AND output of A and B. The other is also the output of an AND gate whose inputs
are Cand the output of an EX-OR operation on A and B. The whole idea of writing the Boolean
in expressions in this modified form was to demonstrate the use of a half-adder circuit in
building a full adder.

The full adder of the type described above forms the basic building block of binary adders.
However, a single full adder circuit can be used to add one-bit binary numbers only. A cascade
arrangement of these adders can be used to construct adders capable of adding binary numbers
with a larger number of bits. For example, a four-bit binary adder would require four full adders
of the type shown in Fig. to be connected in cascade. Figure shows such an arrangement. (A3,
A2, A1, A0) and (B3, B2, B1, B0) are the two binary numbers to be added, with A0 and B0
representing LSBs and A3 and B3 representing MSBs of the two numbers.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Logic circuit diagram of a full adder.

2.5 Half-Subtractor

A half-subtractor is a combinational circuit that can be used to subtract one binary digit from
another to produce a DIFFERENCE output and a BORROW output. The BORROW output
here specifies
half-subtractor, as shown in Fig., explains this further. The Boolean expressions for the two
outputs are given by the equations

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Logic implementation of a full adder with half-adders.

Figure Four-bit binary adder.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

It is obvious that there is no further scope for any simplification of the Boolean expressions
given by above Equations. While the expression for the DIFFERENCE (D) output is that of

Figure Half-subtractor.

Figure Logic diagram of a half-subtractor.

an EX-OR gate, the expression for the BORROW output (B0) is that of an AND gate with input
A complemented before it is fed to the gate. Figure shows the logic implementation of a half-
subtractor. Comparing a half-subtractor with a half-adder, we find that the expressions for the
SUM and DIFFERENCE outputs are just the same. The expression for BORROW in the case of
the half-subtractor is also similar to what we have for CARRY in the case of the half-adder. If
the input A, that is, the minuend, is complemented, an AND gate can be used to implement the
BORROW output.

2.6 Full Subtractor

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and

lower minuend bit or not. As a result, there are three bits to be handled at the input of a full
subtractor, namely the two bits to be subtracted and a borrow bit designated as Bin. There are
two outputs, namely the DIFFERENCE output D and the BORROW output B0. The BORROW

 the next possible higher
minuend bit.

The Boolean expressions for the two output variables are given by the equations

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Truth table of a full subtractor.

Figure Karnaugh maps for difference and borrow outputs.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The Karnaugh maps for the two expressions are given in Fig. As is clear from the two
Karnaugh maps, no simplificationis possible for the difference output D. The simplified
expression for B0 is given by the equation

Figure Logic implementation of a full subtractor with half-subtractors.

If we compare these expressions with those derived earlier in the case of a full adder, we find
that the expression for DIFFERENCE output D is the same as that for the SUM output. Also,
the expression for BORROW output B0 is similar to the expression for CARRY-OUT C0. In the
case of a half-subtractor, the A input is complemented. By a similar analysis it can be shown
that a full subtractor can be implemented with half-subtractors in the same way as a full adder
was constructed using half-adders.

Again, more than one full subtractor can be connected in cascade to perform subtraction on two
larger binary numbers.

2.7 Parallel Adder Subtractor

subtrahend to the minuend and disregarding the final carry, if any. If the MSB bit in the result
of addition is

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

the answer has a negative sign. The true magnitude in this case is
the result of addition.

Full adders can be used to perform subtraction provided we have the necessary additional

overflow. Figure shows one such hardware arrangement. Let us see how it can be used to
perform subtraction of two four-bit binary numbers. A close look at the diagram would reveal
that it is the hardware arrangement for a four-bit binary adder, with the exception that the bits of
one of the binary numbers are fed through controlled inverters. The control input here is

number (B3 B2 B1 B0) are passed on as such to the B inputs of the corresponding full adders.
The outputs of the full adders in this case give the result of addition of the two numbers. When

3 B2 B1 B0) in the present
case, get complemented. If the same -IN of the LSB full adder,

3 B2 B1 B0) to (A3 A2
A1 A0). The outputs of the full adders in this case give the result of subtraction of the two

-OUT of the
MSB full adder) is ignored if it is not displayed.

For implementing an eight-bit adder subtractor, we will require eight full adders and eight two-
input EX-OR gates. Four-bit full adders and quad two-input EX-OR gates are individually
available in integrated circuit form. A commonly used four-bit adder in the TTL family is the
type number 7483. Also, type number 7486 is a quad two-input EX-OR gate in the TTL family.

2.8 Carry Propagation Look-Ahead Carry Generator

The four-bit binary adder described in the previous pages can be used to add two four-bit binary
numbers. Multiple numbers of such adders are used to perform addition operations on larger-bit
binary numbers. Each of the adders is composed of four full adders (FAs) connected in cascade.
The block schematic arrangement of a four-bit adder is reproduced in Fig. for reference and

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

further discussion. This type of adder is also called a parallel binary adder because all the bits of
the augend and addend are present and are fed to the full adder blocks simultaneously.
Theoretically, the addition operation in various full adders takes place simultaneously. What is
of importance and interest to users, more so when they are using a large number of such adders
in their overall computation system, is whether the result of addition and carry-out are available
to them at the same time. In other words, we need to see if this addition operation is truly
parallel in nature. We will soon see that it is not. It is in fact limited by what is known as carry
propagation time. Here, Ci and Ci+1are the input and output CARRY; Pi andGi are two new
binary variables called CARRY PROPAGATE and CARRY GENERATE and will beaddressed
a little later.

For i=1, the diagram in Fig. (b) is that of the LSB full adder of Fig.(a). We can see here that C2,
which is the output CARRY of FA (1) and the input CARRY for FA (2), will appear at the
output aftera minimum of two gate delays plus delay due to the half adder after application of
Ai, Bi and Ci inputs.

Figure Four-bit binary adder.

The steady state of C2 will be delayed by two gate delays after the appearance of C1. Similarly,
C3 and C4 steady state will be four and six gate delays respectively after C1. And final carry C5
will appear after eight gate delays.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Extending it a little further, let us assume that we are having a cascade arrangement of two four-
bit adders to be able to handle eight-bit numbers. Now, C5 will form the input CARRY to the
second four-bit adder. The final output CARRY C9 will now appear after 16 gate delays. This
carry propagation delay limits the speed with which two numbers are added. The outputs of any
such adder arrangement will be correct only if signals are given enough time to propagate
through gates connected between input and output. Since subtraction is also an addition process
and operations like multiplication and division are also processes involving successive addition
and subtraction, the time taken by an addition process is very critical.

One of the possible methods for reducing carry propagation delay time is to use faster logic
gates.

But then there is a limit below which the gate delay cannot be reduced. There are other
hardware- related techniques, the most widely used of which is the concept of look-ahead carry.
This concept attempts to look ahead and generate the carry for a certain given addition
operation that would otherwise have resulted from some previous operation. In order to explain
the concept, let us define two new binary variables: Pi called CARRY PROPAGATE and Gi
called CARRY GENERATE. Binary variable Gi is so called as it generates a carry whenever Ai

and Bi i is called CARRY PROPAGATE as it is instrumental in
propagation of Ci to Ci+1. CARRY, SUM, CARRY GENERATE and CARRY PROPAGATE
parameters are given by the following expressions:

In the next step, we write Boolean expressions for the CARRY output of each full adder stage
in the four-bit binary adder. We obtain the following expressions:

From the expressions for C2, C3 and C4 it is clear that C4 need not wait for C3 and C2 to
propagate. Similarly, C3 does not wait for C2 to propagate. Hardware implementation of these

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

expressions gives us a kind of look-ahead carry generator. A look-ahead carry generator that
implements the above expressions using AND-OR logic is shown in Fig.

Figure shows the four-bit adder with the look-ahead carry concept incorporated. The block
labelled look-ahead carry generator is similar to that shown in Fig. The logic gates shown to
the left of the block represent the input half-adder portion of various full adders constituting the
four-bit adder. The EX-OR gates shown on the right are a portion of the output half-adders of
various fulladders.

All sum outputs in this case will be available at the output after a delay of two levels of logic
gates. 74182 is a typical look-ahead carry generator IC of the TTL logic family. This IC can be
used to generate relevant carry inputs for four four-bit binary adders connected in cascade to
perform operation on two 16-bit numbers. Of course, the four-bit adders should be of the type
so as to produce CARRY GENERATE and CARRY PROPAGATE outputs. Figure shows the
arrangement. In the figure shown, Cn is the CARRY input, G0, G1, G2 and G3 are CARRY
GENERATE inputs for 74182 and P0, P1, P2 and P3 are CARRY PROPAGATE inputs for
74182. Cn+x, Cn+yandCn+zare the CARRY outputs generated by 74182 for the four-bit adders.
The G and P outputs of 74182 need to be cascaded.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Look-ahead carry generator.

Figure Four-bit full adder with a look-ahead carry generator.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure IC 74182 interfaced with four four-bit adders.

2.9 Magnitude Comparator

A magnitude comparator is a combinational circuit that compares two given numbers and
determines whether one is equal to, less than or greater than the other. The output is in the form
of three binary variables representing the conditions A = B A > B and A < B, if A and B are the
two numbers being compared. Depending upon the relative magnitude of the two numbers, the
relevant output changes state. If the two numbers, let us say, are four-bit binary numbers and
are designated as (A3 A2 A1 A0) and (B3 B2 B1 B0), the two numbers will be equal if all pairs of
significant digits are equal, that is, A3 = B3 , A2 = B2 A1 = B1 and A0 = B0 . In order to
determine whether A is greater than or less than B we inspect the relative magnitude of pairs of
significant digits, starting from the most significant position. The comparison is done by
successively comparing the next adjacent lower pair of digits if the digits of the pair under
examination are equal. The comparison continues until a pair of unequal digits is reached. In the
pair of unequal digits, if Ai = 1 and Bi = 0, then A > B, and if Ai = 0, Bi = 1 then A < B. If X, Y
and Z are three variables respectively representing the A = B, A > Band A < B conditions, then
the Boolean expression representing these conditions are given by the equations

Let us examine equation. x3 3 and B3 are equal. Similarly,
conditions for x2 , x1 and x0 2 and B2 , equal A1 and B1 and
equal A0 and B0ANDing of x3 , x2 , x1 and x0 3 , x2 , x1 and x0

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Four-bit magnitude comparator.

Magnitude comparators are available in IC form. For example, 7485 is a four-bit magnitude
comparator of the TTL logic family. IC 4585 is a similar device in the CMOS family. 7485 and
4585 have the same pin connection diagram and functional table. The logic circuit inside these
devices determines whether one four-bit number, binary or BCD, is less than, equal to or
greater than a second four-bit number. It can perform comparison of straight binary and straight
BCD (8-4-2-1) codes. These devices can be cascaded together to perform operations on larger
bit numbers without the help of any external gates. This is facilitated by three additional inputs
called cascading or expansion inputs available on the IC. These cascading inputs are also
designated as A = B, A > B and A < B inputs. Cascading of individual magnitude comparators
of the type 7485 or 4585 is discussed in the following paragraphs. IC 74AS885 is another
common magnitude comparator. The device is an eight- bit magnitude comparator belonging to
the advanced Schottky TTL family. It can perform high-speed arithmetic or logic comparisons
on two eight- t numbers and produces two fully decoded decisions
at the output about one number being either greater than or less than the other. More than one of
these devices can also be connected in a cascade arrangement to perform comparison of
numbers of longer lengths.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.10 BCD Adder

A BCD adder is used to perform the addition of BCD numbers. A BCD digit can have any of
the ten possible four-

d two BCD digits and we assume that there is
an input carry too, the highest binary number that we can get is the equivalent of decimal
number 19 (9 + 9 + 1).

Figure Four-bit adder-subtractor.

This binary number is going to be (10011)2. On the other hand, if we do BCD addition, we
would expect the answer to be (0001 1001)BCD. And if we restrict the output bits to the
minimum required, the answer in BCD would be (1 1001)BCD. Table lists the possible results in
binary and the expected results in BCD when we use a four-bit binary adder to perform the
addition of two BCD digits. It is clear from the table that, as long as the sum of the two BCD
digits remains equal to or less than 9, the four-bit adder produces the correct BCD output.

The binary sum and the BCD sum in this case are the same. It is only when the sum is greater
than 9 that the two results are different. It can also be seen from the table that, for a decimal
sum greater than 9 (or the equivalent binary sum greater than 1001), if we add 0110 to the

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

binary sum, we can get the correct BCD sum and the desired carry output too. The Boolean
expression that can apply the necessary correction is written as

Equation implies the following. A correction needs to be applied whenever K = 1. This takes
care of the last four entries. Also, a correction needs to be applied whenever both Z3 and Z2 are

equal to

Table Results in binary and the expected results in BCD using a four-bit binary adder to
perform the addition of two BCD digits.

12, 13, 14 and 15. For the remaining two entries corresponding to a decimal sum equal to 10
and11, a correction is applied for both Z3 and Z1 -implementing,
0110 can be added to the binary sum output with the help of a second four-bit binary adder. The
correction logic as dictated by the Boolean expression should ensure that (0110) gets added
only when the above expression is satisfied. Otherwise, the sum output of the first binary adder
should be passed on as such to the final output, which can be accomplished by adding (0000) in
the second adder. Figure shows the logic arrangement of a BCD adder capable of adding two
BCD digits with the help of two four-bit binary adders and some additional combinational
logic.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The BCD adder described in the preceding paragraphs can be used to add two single-digit BCD
numbers only. However, a cascade arrangement of single-digit BCD adder hardware can be
used to perform the addition of multiple-digit BCD numbers. For example, an n-digit BCD
adder would require n such stages in cascade. As an illustration, Fig. shows the block diagram
of a circuit for the addition of two three-digit BCD numbers. The first BCD adder, labelled LSD
(Least Significant Digit), handles the least significant BCD digits. It produces the sum output
(S3 S2 S1 S0), which is the BCD code for the least significant digit of the sum. It also produces
an output carry that is fed as an input carry to the next higher adjacent BCD adder. This BCD
adder produces the sum output (S7 S6 S5 S4), which is the BCD code for the second digit of the
sum, and a carry output. This output carry serves as an input carry for the BCD adder
representing the most significant digits. The sum outputs (S11 S10 S9 S8) represent the BCD code
for the MSD of the sum.

Figure Single-digit BCD adder.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Three-digit BCD adder.

2.11 Multiplexer

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) 4-to-1 multiplexer circuit representation and (b) 4-to-1 multiplexer truth table.

Figure (a) 8-to-1 multiplexer circuit representation and (b) 8-to-1 multiplexer truth table.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) 16-to-1 multiplexer circuit representation and (b) 16-to-1 multiplexer truth
table.

2.11.1 Inside the Multiplexer

Figure (a) 2-to-1 multiplexer circuit representation, (b) 2-to-1 multiplexer truth table and
(c) 2-to-1 multiplexer logic diagram.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Logic diagram of a 4-to-1 multiplexer.

Figure 2-to-1 multiplexer with an ENABLE input.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.11.2 Implementing Boolean Functions with Multiplexers

Figure 4-to-1 multiplexer with an ENABLE input.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Hardware implementation of the Boolean function given by equation

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Truth table.

Table Implementation table for multiplexers.

Table Implementation table for multiplexers.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Hardware implementation using a 4-to-1 multiplexer.

Table Implementation table for multiplexers.

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.12 Encoders

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.12.1 Priority Encoder

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.13 Demultiplexers and Decoders

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.13.1 Implementing Boolean Functions with Decoders

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.13.2 Cascading Decoder Circuits

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1. Define combinational logic.
When logic gates are connected together to produce a specified output for certain
specified combinations of input variables, with no storage involved, the resulting
circuit is called combinational logic.

2. Explain the design procedure for combinational circuits.
The problem definition
Determine the number of available input variables & required O/P

variables.
Truth Table Construction
Obtain simplified Boolean expression for each O/P (using K-Map).
Obtain the logic diagram.

3. Define Half adder and full adder
Half Adder: The logic circuit that performs the addition of two bits is a half adder.
Full Adder: The circuit that performs the addition of three bits is a full adder.

4. Define Decoder?
A decoder is a multiple - input multiple output logic circuit that converts coded inputs
into coded outputs where the input and output codes are different.

5. What is binary decoder?

www.AllAbtEngg.com

