
AllAbtEngg Android Application for Anna University, Polytechnic & School

 Inheritance is the process by which new classes called derived classes are created from

existing classes called base classes.

- The derived classes have all the features of the base class and the programmer can

choose to add new features specific to the newly created derived class.

 For example, a programmer can create a base class named fruit and define derived classes

as mango, orange, banana, etc.

- Each of these derived classes, (mango, orange, banana, etc.) has all the features of the

base class (fruit) with additional attributes or features specific to these newly created

derived classes.

- Mango would have its own defined features, orange would have its own defined

features, banana would have its own defined features, etc. This concept of

Inheritance leads to the concept of polymorphism.

1. Reusability:

 Inheritance helps the code to be reused in many situations. The base class is defined and

once it is compiled, it need not be reworked.

 Using the concept of inheritance, the programmer can create as many derived classes from

the base class as needed while adding specific features to each derived class as needed.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2. Saves Time and Effort:

 The above concept of reusability achieved by inheritance saves the programmer time and

effort, because the main code written can be reused in various situations as needed.

3. Increases Program Structure which results in greater reliability.

4. Polymorphism

General Format for implementing the concept of Inheritance:

There are five different inheritances supported in C++:

1. : There is only one Base Class and Only one Derived

Class Means they have one to one Communication between them

2.

 When a

Derived Class again will be

inherited by another Class

then it creates a Multiple

Levels.

3.

When a

Base Class is used or inherited by many Derived Classes.

4. When a Derived Class takes Features from two Base Classes.

5. : This is a Mixture of two or More Inheritance

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 Derived-class object is an object of its base class, and one base class can have many

derived classes, the set of objects represented by a base class typically is larger than the set

of objects represented by any of its derived classes.

 Inheritance relationships form class hierarchies. A base class exists in a hierarchical

relationship with its derived classes.

 public members are accessible within its body and anywhere that the

program has a handle (i.e., a name, reference or pointer) to an object of that class or one of

its derived classes.

 private members are accessible only within its body and to the friends of

that base class.

 that base class.

 Derived-class member functions can refer to public and protected members of the base

class simply by using the member names.

 When a derived-class member function redefines a base-class member function, the base-

class member can still be accessed from the derived class by preceding the base-class

member name with the base-class name and the scope resolution operator (::).

Fig.2.2. Inheritance hierarchy for Student result

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The class pointer can be cast by the base class or by the derived class.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2.3.1. Class Object To Base (Upcasting)

 Upcasting is converting a derived-class reference or pointer to a base-class. In other words,

upcasting allows us to treat a derived type as though it were its base type.

 It is always allowed for public inheritance, without an explicit type cast. This is a result of

the is-a relationship between the base and derived classes.

 Here is the code dealing with shapes. We created Shape class, and derived Circle, Square,

and Triangle classes from the Shape class. Then, we made a member function that talks to

the base class:

 The function speaks to any Shape, so it is independent of the specific type of object that it's

drawing, moving, and shrinking. If in some other part of the program we use

the play() function like below:

 We will check. A Triangle is being passed into a function that is expecting Shape. Since

a Triangle is a Shape, it can be treated as one by play(). That is, any message

that play() can send to a Shape a Triangle can accept.

 Upcasting allows us to treat a derived type as though it were its base type.

 The most important aspect of inheritance is not that it provides member functions for the

new class, however. It's the relationship expressed between the new class and the base

class. This relationship can be summarized by saying, "The new class is a type of the

existing class."

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

A Child object is a Parent object in that it inherits all the data members and member

functions of a Parent object.

 Upcasting is transitive: if we derive a Child class from Parent, then Parent pointer

(reference) can refer to a Parent or a Child object.

Upcasting can cause object slicing when a derived class object is passed by value as a base

class object, as in foo(Base derived_obj).

Because implicit upcasting makes it possible for a base-class pointer (reference) to refer to a

base-class object or a derived-class object, there is the need for dynamic binding. That's why

we have virtual member functions.

 Pointer (Reference) type: known at compile time.

 Object type: not known until run time.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

#include<iostream.h>

class Mother

{

 public:

 void cooks()

 {

 cout<<"Mother cooks food";

 }

};

class child:public mother

{

public:

 void studies()

 {

 cout<<"Child studies";

 }

};

int main()

{

child chl;

Mother *pMother=&chl;

pMother->cooks();

return 0;

}

2.3.2. Downcasting

 The opposite process, converting a base-class pointer (reference) to a derived-class pointer

(reference) is called downcasting.

 Downcasting is not allowed without an explicit type cast. The reason for this restriction is

that the is-a relationship is not, in most of the cases, symmetric.

 A derived class could add new data members, and the class member functions that used

these data members wouldn't apply to the base class.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 As in the example, we derived Child class from a Parent class, adding a member function,

gotoSchool(). It wouldn't make sense to apply the gotoSchool() method to a Parent object.

However, if implicit downcasting were allowed, we could accidentally assign the address

of a Parent object to a pointer-to-Child.

and use

 the pointer to invoke the gotoSchool() method as in the following line.

 Because a Parent isn't a Child (a Parent need not have a gotoSchool() method), the

downcasting in the above line can lead to an unsafe operation.

 Downcasting is the opposite of the basic object-oriented rule, which states objects of a

derived class, can always be assigned to variables of a base class.

#include<iostream.h>

 class Mother

 {

public:

 void cooks()

 {

 cout<<"Mother cooks food";

 }

 };

 class child1:public mother

 {

public:

 void studies()

 {

 cout<<"Child1 studies";

 }

 };

 class child2:public mother

 {

public:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 void studies()

 {

 cout<<"Child2 studies";

 }

 };

 int main()

 {

Mother *pMother=new child1;

child1 *pcld1= (child1*)pMother;

child2 *pcld2= (child2*)pMother;

cout<<"Using object of Mother class";

pMother->cooks;

cout<<"Using object of Child1 class";

pcld1->studies();

cout<<"Using object of Child1 class";

pcld2->studies();

return 0;

 }

If base class and derived class have member functions with same name and arguments. If

you create an object of derived class and write code to access that member function then,

the member function in derived class is only invoked, i.e., the member function of

derived class overrides the member function of base class. This feature in C++

programming is known as function overriding.

To access the overridden function of base class from derived class, scope resolution

operator ::. For example: If you want to access get_data() function of base class from

derived class in above example then, the following statement is used in derived class.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 Public, Protected and Private Inheritance

 When deriving a class from a base class, the base class may be inherited through public,

protected or private inheritance.

 Figure 2.5 summarizes for each type of inheritance the accessibility of base-class members

in a derived class.

 The first column contains the base-class access specifiers. When deriving a class from

a public base class, public members of the base class become public members of the

derived class, and protected members of the base class become protected members of

the derived class.

 never accessible directly from a derived class, but

can be accessed through calls to the public and protected members of the base class.

 When deriving from a protected base class, public and protected members of the base

class become protected members of the derived class.

 When deriving from a private base class, public and protected members of the base

class become private members (e.g., the functions become utility functions) of the

derived class. Private and protected inheritance are not is-a relationships.

Base-
class

Member
access

specifier

Type of inheritance

Public inheritance protected
inheritance

private
inheritance

P
u

bl
ic

public in derived class.

Can be accessed directly

by member functions,

friend functions and

nonmember functions.

protected in derived

class. Can be accessed

directly by member

functions and friend

functions.

private in derived class.

Can be accessed

directly by member

functions and friend

functions

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

pr
ot

ec
te

d

protected in derived class.

Can be accessed directly

by member functions and

friend functions.

protected in derived

class. Can be accessed

directly by member

functions and friend

functions.

private in derived class.

Can be accessed

directly by member

functions and friend

functions.

pr
iv

at
e

Hidden in derived class.

Can be accessed by

member functions and

friend functions through

public or protected

member

functions of the base

class.

Hidden in derived class.

Can be accessed by

member functions and

friend functions

through public or

protected member

functions of the base

class.

Hidden in derived class.

Can be accessed by

member functions and

friend functions

through public or

protected member

functions of the base

class.

Fig 2.5. Base-class member accessibility in a derived class.

2.6. Constructors and Destructors in derived Classes

 If the base class is derived from another class, the base-class constructor is required to

invoke the constructor of the next class up in the hierarchy, and so on. The last constructor

called in this chain is the one of the class at the base of the hierarchy, whose body actually

finishes executing first. The original derived- uting

last.

 Each base-class constructor initializes the base-class data members that the derived-class

object inherits. In the Commission-

 When a derived-

begins a chain (or cascade) of destructor calls in which the derived-class destructor and the

reverse of the order in which the constructors executed.

 When a derived- is called, the destructor performs its task, then

invokes the destructor of the next base class up the hierarchy. This process repeats until the

destructor of the final base class at the top of the hierarchy is called. Then the object is

removed from memory.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 Base-class constructors, destructors and overloaded assignment operators are not inherited

by derived classes. Derived-class constructors, destructors and overloaded assignment

operators, however, can call base-class versions.

 If any base class contains a constructor with one or more arguments, then it is mandatory

for the derived class to pass arguments to the base class constructors.

Method of Inheritance Order of Execution

class B:public A

{};

A(); base constructor

B(); derived constructor

class A:public B,public C

{

};

A(); derived constructor

B(); base constructo1

C(); base constructor2

class A:public B,virtual public C

};

A(); derived constructor

B(); ordinary base constructor

C(); virtual base

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

General format is,

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

An object can be a collection of many other objects. Example,

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 The is-a relationship represents inheritance. In an is-a relationship, an object of a derived

class also can

be treated as an object of its base class for example, a Car is a Vehicle, so any attributes

and behaviors of a Vehicle are also attributes and behaviors of a Car.

 The has-a relationship represents composition. In a has-a relationship, an object contains

one or more objects of other classes as members. For example, a Car has many

components it has a steering wheel, has a brake pedal, has a transmission, etc.

 Virtual functions

A virtual function is a special type of function that resolves to the most-derived version of the

keyword before the function declaration.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

A virtual function body is known as Pure Virtual Function. In above example we can see that

the function is base class never gets invoked. In such type of situations we can use pure virtual

functions

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1. The virtual function must be member of class

2. They cannot be static members

3. They are accessed by using object pointers

4. Prototype of base class function & derived class must be same

5. Virtual function in base class must be defined even though it is not used

6. A virtual function can be friend function of another class

7. We could not have virtual constructor

8. If a virtual function is derived in base class, it need not be necessarily redefined in the

derived class

9. Pointer object of base class can point to any object of derived class but reverse is not true

10. When a base pointer points to derived class, incrementing & decrementing it will not make

it point to the next object of derived class

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

To represent an object that invokes a member function. this pointer that points to the object for

which this function was called

Example:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 In C++ an abstract class is one which defines an interface, but does not necessarily

provide implementations for all its member functions. An abstract class is meant to be used

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

as the base class from which other classes are derived. The derived class is expected to

provide implementations for the member functions that are not implemented in the base

class.

 A derived class that implements all the missing functionality is called a concrete class .

 A virtual member function for which no implementation is given is called a pure virtual

function . If a C++ class contains a pure virtual function, it is an abstract class. In C++ it is

not possible to instantiate an abstract class.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Difference between Abstract class and Concrete class

Abstract class Concrete class

Abstract class is a class that is declared with

the keyword abstract

Only the keyword class is used for

declaration of concrete class

The Abstract class cannot be initiated. But

we can inherit the Abstract class

The Concrete class can be initiated as well

as inherited.

At least one method must be abstract in

abstract class

No method should be abstract in concrete

class

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 If the destructor in the base class is not made virtual, then an object that might have been

declared of type base class and instance of child class would simply call the base class

destructor without calling the derived class destructor.

 Hence, by making the destructor in the base class virtual, we ensure that the derived class

destructor gets called before the base class destructor.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Dynamic binding means the JVM will decide at runtime which method implementation to

invoke based on the class of the object.

The compiler should match function calls with the correct definition at the run time.

Dynamic binding is achieved using virtual function

Static Binding Vs Dynamic Binding

Static Binding Dynamic Binding

Static binding happens at compile time Dynamic binding happens at run time

Static binding is also called as early binding Dynamic binding is also called as late

binding

There is no use of virtual in this binding The virtual is used in Dynamic binding

It is more efficient that the late binding as

extra level of indirection is involved in late

binding

It is flexible

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

int main()

{

return 0;

}

data-type variable-name;

data-type &reference-name=variable-name;

if(condition)

statement;

else

statement;

switch(expression)

{

case constant1: group of statements 1; break;

case constant2: group of statements 2; break;...

default: default group of statements

}

do

{

}while(condition is true);

while(expression){}

for(initialization;condition;increase or decrease)

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

type name_of_the_function(argument list)

{

//body of the function

}

inline function_header

{

//body of the function

}

friend return-type function-name(class-name object-name);

class name_of_class

{

 private : variable declaration; //data member

 Function declaration; //Member Fun.(Method)

protected: variable declaration;

 Function declaration;

public : variable declaration;

 Function declaration;

};

Name_of_the_class::function_name

return_type name_of_the_class::function_name(argument list)

{

//body of function

}

class-name object-name;

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

static int count;

class name()

{

argumentlist

}

class-Name e3(e2); or class-Name e3=e2;

~classname();

return_type classname::operator operator-symbol(argument)

{

 statements;

}

operator typename()

{

....... //statements

}

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

class A

 {

 };

 class B1:virtual public A

 {

 };

 class B2:public virtual A

 {

 ent2

 };

 class C:public B1,public B2

 {

 };

constructor(arglist):initialization-section

 {

 //assignment section

}

data-type *pointer-variable = value;

data_type(*function_name)();

class AB

{

public:

virtual void f()= 0;

};

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

catch(type arg)

{

}

try

{

//try block

}

catch(type1 arg)

{

//catch block1

}

catch(type2 arg)

{

//catch block2

}

catch(typeN arg)

{

//catch blockN

}

catch(. . .)

{

//statement for processing all exceptions

}

throw;

www.AllAbtEngg.com

