
AllAbtEngg Android Application for Anna University, Polytechnic & School

Data refers to a single value or a set of values.

Data Structures is the representation of the logical relationship between individual elements of

data. This is a way of organizing all data items that considers not the elements stored but also

their relationship to each other.

1. Linear Data Structures (Arrays, Lists, Stacks, Queues) : This is an ordered set consisting of

a variable number of elements to which insertions and deletion can be made. A List which

displays the relationship of adjacency between elements is said to be linear.

2. Non- Linear Data Structures (Tree, Graphs) : This is an unordered set consisting of a

variable number of elements to which insertions and deletion can be made.

 Abstract Data Types (ADT) is a set of objects(lists, sets and graphs) together with a set of

operations. E.g. List ADT, Tree ADT, Stack ADT, Set ADT and so on.

 For example, In list ADT, we have the operations such as insert, delete, and find, count

and so on. The Set ADT the operations are Union, Intersection, size, complement and so

on.

The basic idea is that the implementation of these operations is written once, further needs of

this ADT we can call the appropriate function.

3.2.

 A list is a sequence of zero or more elements of a given type. It can be of the form A1, A2,

A3 empty list.

For any list except the empty list the element Ai+1 follows the element Ai (i<n) and that Ai-

1 precedes Ai (i>1) The first element of the list is A1 and the last element of the list is An. A1

has no predecessor and An has no successor. The position of the element Ai in a list is i.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1. Print the elements of the list in the order of occurrence

2. Returns the position of the first occurrence of the element in the list

3. Insert an element into the list at the specified position

4. Delete an element from the list

5. Empty the list.

The Last cell s Next pointer point to NULL.

3.3.

 - In this implementation, the list elements are stored in

contiguous cells of an array. All the list operation can be implemented by using the array.

i. Even if the array is dynamically allocated, an estimate of the maximum size of the

list is required. Usually this requires a high overestimate, which waste considerable

space.

ii. Insertion and deletion operations are expensive, because insertion at the beginning

of the array requires pushing the entire array elements one step downwards.

As like the deleting the first element of the array requires, shifting all elements up

one position. So the worst case operation requires the computation time O(n).

 - Linked list consist of a series of structures, which are not

necessarily in adjacent in memory. The structure is called as Node. Each structure (node)

contains

A singly linked list is a list in which each node contains only one link field pointing to the next

node in the list. A node in this type of linked list contains two types of fields.

Data This holds the list element

Next Pointer to the next node in the list

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The list contains five structures. The structures are stored at memory locations 800, 1600, 1800,

1985, 2600 respectively. The Next pointer in the first structure contains the value 1600.

Basic linked List Operations

The basic operations to be performed on linked lists are as

1. Creation - Create a linked list

2. Insertion - insert a new node at the specified position

3. Deletion - delete the specified node

4. Traversing - to display every node information

5. Find - Search a particular data

Implementation

To access the list, we must know the address of the header Node. To insert a new node at the

beginning of the list, we have to change the pointer of the head node. If we miss to do this we

can lose the list. Likewise deleting a node from the front of the list is also a special case,

because it changes the head of the list.

To solve the above mentioned problem, we will keep a sentinel node. A linked list with

header representation is shown below,

For easy implementation of all linked list operation a sentinel node is maintained to point

the beginning of the list. This node is sometimes referred to as a header or dummy node.

Every node of a singly-linked list contains following information:

 a value (user's data)

 a link to the next element (auxiliary data)

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Insertion into a singly-linked list has two special cases. It's insertion a new node before the head

(to the very beginning of the list) and after the tail (to the very end of the list). In any other case,

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

new node is inserted in the middle of the list and so, has a predecessor and successor in the list.

There is a description of all these cases below.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Assume, that we have a list with some nodes. Traversal is the very basic operation, which

presents as a part in almost every operation on a singly-linked list. For instance, algorithm may

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

traverse a singly-linked list to find a value, find a position for insertion, etc. For a singly-linked

list, only forward direction traversal is possible.

Beginning from the head,

1. check, if the end of a list hasn't been reached yet

2. do some actions with the current node, which is specific for particular algorithm

3. current node becomes previous and next node becomes current. Go to the step 1.

There are four cases, which can occur while removing the node. These cases are similar to the

cases in add operation. We have the same four

situations, but the order of algorithm actions is opposite.

When list has only one node, which is indicated by the condition, that the head points to the

same node as the tail, the removal is quite simple. Algorithm disposes the node, pointed by

head (or tail) and sets both head and tail to NULL.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

A node contains pointers to previous and next element. One can move in both directions.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

;

Advantages

1. It is more efficient.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Disadvantages of Doubly Linked list over Single Linked list

1. The location of the preceding node is needed.

2. The two-way list contains this information, whereas with a one-way list we must traverse

the list.

3. A two-way list is not much more useful than a one-way list except in special

circumstances.

The last node points to the first one.

Types of Circular linked List

1. Circular Singly Linked List

2. Circular Doubly Linked List

It is a simple way to represent single-variable polynomials. A polynomial, P(x) is an

expression, the variable x of the form (axn+bxn-1

 n is a non-negative number (n-degrees of the polynomial)

 In is a non-negative number (n-degrees of the polynomial)

In this polynomial expression consists of two parts one is a co-efficient and the other is an

exponent. Consider the following polynomial.

1000x4+200x3+100x2+50x Here (1000, 200, 100, 50) these are co-efficient and (4,3,2,1) are

exponent.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

A stack is a data structure that inserts and deletes can be performed in only one position,

namely the end of the list called the top.

A stack is a data structure in which only the top element can be accessed. As data is stored in

the stack, each data is pushed downward, leaving the most recently added data on top.

The fundamental operations on a stack are

 push, which is equivalent to an insert,

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 pop, which deletes the most recently inserted element.

Stack Model

Insert the following elements into stack. The elements are, 10, 20, 30.

Pop operation can be shown below,Pop(20)

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Implementation of array-based stack is very simple. It uses top variable to point to the topmost

stack's element in the array.

1. Initialy top = -1;

2. push operation increases top by one and writes pushed element to storage[top];

3. pop operation checks that top is not equal to -1 and decreases top variable by 1;

4. peek operation checks that top is not equal to -1 and returns storage[top];

5. isEmpty returns boolean (top == -1).

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Inserting an element into linked list contains 3 types .

1. Insertion at beginning of the Linked list

2. Insertion at the middle of the linked list

3. Insertion at the end of the linked list

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

3.7. Queue ADT

Queue is an ordered collection of elements in that insertion is done at one end called rear,

whereas deletion is performed at the other end called front. The basic operations on a queue are

 enqueue, which inserts an element at the end of the list (called the rear)

 dequeue, which deletes (and returns) the element at the start of the list (known as the front).

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

3.7.1. Implementation of Stack

3.7.1.1. Array Implementation of Queues

For each queue data structure, we keep an array, QUEUE[], and the positions q_front and

q_rear, which represent the ends of the queue. We also keep track of the number of elements

that are actually in the queue, q_size. All this information is part of one structure, and as usual,

except for the queue routines themselves, no routine should ever access these directly.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

3.7.1.2. Linked List Implementation of Stacks

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 Double-Ended Queues

A queue-like data structure that supports insertion and deletion at both the front and the rear of

the queue. The functions of the deque ADT are as follows, where D denotes the deque:

insertFront(e) : Insert a new element e at the beginning of the deque.

insertBack(e) : Insert a new element e at the end of the deque.

eraseFront() : Remove the first element of the deque; an error occurs if the deque is empty.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

eraseBack() : Remove the last element of the deque; an error occurs if the deque is empty.

 Additionally, the deque includes the following support functions:

front() : Return the first element of the deque; an error occurs if the deque is empty.

back() : Return the last element of the deque; an error occurs if the deque is empty.

size() : Return the number of elements of the deque.

empty() : Return true if the deque is empty and false otherwise.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

3.8. Circular Queue

 In circular queue, the insertion of a new element is performed at the very first location of the

queue. If the last location of the queue is full in which the first element comes just after the last

element. Insert the following elements into the circular Queue 10,20,30,40,50,60. Queue Size is

6.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Advantages

 To overcome the problem of unutilized space in linear queues when it is implemented using

an array. Insert the following element into the circular

queue. Elements are, 10,20,30,40,50,60.

#define size 6

struct cqueue

{

int CQ[size];

int rear,front;

};

void insertion(int X,CQUEUE cq)

{

 int item;

 if(front=(rear+1)%size)

 else

{

 if(front==-1)

front=rear=-1;

 else

rear=(rear+1)%size;

CQ[rear]=item;

 }

}

void delete()

{

 int item;

 if(front==-1)

 else

 {

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 item=CQ[front];

 if(front==rear)

 front=rear=-1

else

 front=(front+1)%size;

 }

}

3.8. Evaluating arithmetic expressions

The stack is used to convert the infix expression to postfix expression.

Infix

In Infix notation, the arithmetic operator appears between the two operands to which it is being

applied. For example: A / B + C

Postfix

The arithmetic operator appears directly after the two operands to which it applies. Also called

reverse polish notation. ((A/B) + C) For example: AB / C +

Algorithm

1. Read the infix expression one character at a time until we reach the end of input

a. If the character is an operand, place it on to the output.

b. If the character is a left parenthesis, push it onto the stack.

c. If the character is a right parenthesis, pop all the operators from the stack until we

encounters a left parenthesis, discard both the parenthesis in the output.

d. If the character is an operator, then pop the entries from the stack until we find an

2. Pop the stack until it is empty, writing symbols onto the output.

Operator Precedence in stack Precedence in Expression

^ 3 4

*, / 2 2

+, - 1 1

(0 4

Example

Suppose we want to convert the infix expression

a+b*c+(d*e+f)*g into postfix expression.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

First, the symbol a is read, so it is passed through to the output. Then '+' is read and pushed onto

the stack. Next b is read and passed through to the output. The state is as follows:

Next a '*' is read. The top entry on the operator stack has lower precedence than '*', so nothing
is output and '*' is put on the stack. Next, c is read and output. Thus far, we have

The next symbol is a '+'. Checking the stack, we find that we will pop a '*' and place it on the

output, pop the other '+', which is not of lower but equal priority, on the stack, and then push the

'+'.

The next symbol read is an '(', which, being of highest precedence, is placed on the stack. Then

d is read and output.

We continue by reading a '*'. Since open parentheses do not get removed except when a closed

parenthesis is being processed, there is no output. Next, e is read and output.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The next symbol read is a '+'. We pop and output '*' and then we push '+'. Then we read and

output

Now we read a ')', so the stack is emptied back to the '('. We output a '+'.

We read a '*' next; it is pushed onto the stack. Then g is read and output.

The input is now empty, so we pop and output symbols from the stack until it is empty.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

