CS6404 Design and Analysis of Algorithms Unit 111 3.1

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE
3.1 COMPUTING A BINOMIAL COEFFICIENT

Dynamic Programming Binomial Coefficients

Dynamic Programming was invented by Richard Bellman, 1950. It is a very general
technique for solving optimization problems.

Dynamic Programming requires:
1. Problem divided into overlapping sub-problems
2. Sub-problem can be represented by a table
3. Principle of optimality, recursive relation between smaller and larger problems

Compared to a brute force recursive algorithm that could run exponential, the dynamic
programming algorithm runs typically in quadratic time. The recursive algorithm ran in exponential
time while the iterative algorithm ran in linear time.

Computing a Binomial Coefficient

Computing binomial coefficients is non optimization problem but can be solved using
dynamic programming.
Binomial coefficients are represented by C(n, k) =n! / (k! (n-k)!) or (}) and can be used to
represent the coefficients of a binomial:

(a+b)" =Cn,0)a"’ +...+Cn ka™ "+ ...+ Cn, n)a'p"
The recursive relation is defined by the prior power

C(n, k) = C(n-1, k-1) + C(n-1, k) for n > k> 0 with initial Condition C(n, 0) = C(n, n) = 1
Dynamic algorithm constructs a nxk table, with the first column and diagonal filled out using the
Initial Condition. Construct the table:

k

0 1 2 k-1 k
0 1
1 1 1
2 1 2 1
k 1 1
n-1 1 Cn-1,k-1) | Cn-1, k)
n 1 Cn, k)

The table is then filled out iteratively, row by row using the recursive relation.
Algorithm Binomial(n, k)
for i — 0 to n do // fill out the table row wise
for i = 0 to min(7, k) do
if j==0 or j==i then (i, j] <— 1 // Initial Condition
else C[i, j] < C[i-1,j-1] + C[i-1,j] // recursive relation
return Cln, k]

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.2

The cost of the algorithm is filing out the table. Addition is the basic operation. Because k < n, the
sum needs to be split into two parts because only the half the table needs to be filled out
for i <k and remaining part of the table is filled out across the entire row.

A(n, k) = sum for upper triangle + sum for the lower rectangle
DYDY RS B YL YRS
=i 1) + i k
= (k-1)k/2 + k(n-k) € ©(nk)
Time efficiency: O (nk)
Space efficiency: @(nk)

Example: Relation of binomial coefficients and pascal’s triangle.
A formula for computing binomial coefficients is this:

Y !
e (rn — m)lm!

Using an identity called Pascal's Formula a recursive formulation for it looks like this:
1 ifm =10

Y _)1 if n =1
T i — 1 n—1 ;
f otherwise
iy mo— 1

This construction forms Each number in the triangle is the sum of the two numbers directly above

1t.
n 2] () (3 () G 0) 09
o 1
1 1 1
P | 2 1
3 1 3 3 1
4 1 4 G 4 1
15 T 5 10) 10 o 1
o 1 G 15 20 15 5] 1
v] T 21 S5 35 21 T 1

Finding a binomial coefficient is as simple as a lookup in Pascal's Triangle.

Example: (x+y)’ =1 °x7y0+7-x6y1+2 1 'x5y2+35 °x4y3+3 5 °x3y4+2 1 °x2y5+7°xly6+l "y’
= X7+7X6y+2 1X5y2+35x4y3+35x3y4+2 1)(2y5 +7xy6+y7

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.3

3.2 WARSHALL’S AND FLOYD’ ALGORITHM

Warshall’s and Floyd’s Algorithms: Warshall’s algorithm for computing the transitive
closure (there is a path between any two nodes) of a directed graph and Floyd’s algorithm for the
all-pairs shortest-paths problem. These algorithms are based on dynamic programming.

WARSHALL’S ALGORITHM (All-Pairs Path Existence Problem)

A directed graph (or digraph) is a graph, or set of vertices connected by edges, where the
edges have a direction associated with them.

An Adjacency matrix A = {a;} of a directed graph is the boolean matrix that has 1 in its ith
row and jth column if and only if there is a directed edge from the ith vertex to the jth vertex.

The transitive closure of a directed graph with n vertices can be defined as the n x n
boolean matrix T = {t;; }, in which the element in the ith row and the jth column is 1 if there exists a
nontrivial path (i.e., directed path of a positive length) from the ith vertex to the jth vertex;
otherwise, tij is 0.

.“raﬂ“f :f“b“\l a b ¢ d (? b ¢ d

2 4 a0 1T 0 O g % 9 % 4

L A b0 0 0 1 = b1 1 1T

p— : c|0 0 0 O clo 0 0o O

(e—4d) dl1 0 1 o g1 9 4 9
(a) (b) (c)

FIGURE 3.1 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

The transitive closure of a digraph can be generated with the help of depth-first search or
breadth-first search. Every vertex as a starting point yields the transitive closure for all.

Warshall’s algorithm constructs the transitive closure through a series of n X n boolean
matrices: R?, ..., R¥D R®, R®,

The element r,j(k) in the ith row and jth column of matrix R™ (GLj=1,2,...,nk=01,...
, n) is equal to 1 if and only if there exists a directed path of a positive length from the ith vertex to
the jth vertex with each intermediate vertex, if any, numbered not higher than k.
Steps to compute R, ..., RV, RY, .. . R™,

e The series starts with R(O), which does not allow any intermediate vertices in its
paths; hence, R is nothing other than the adjacency matrix of the digraph.

e R™ contains the information about paths that can use the first vertex as intermediate.
it may contain more 1°s than R,

e The last matrix in the series, R(n), reflects paths that can use all n vertices of the
digraph as intermediate and hence is nothing other than the digraph’s transitive
closure.

e In general, each subsequent matrix in series has one more vertex to use as
intermediate for its paths than its predecessor.

e The last matrix in the series, R™, reflects paths that can use all n vertices of the
digraph as intermediate and hence is nothing other than the digraph’s transitive
closure.

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.4

RE-T= k([1 = RW= k| 1

=1 i 1

FIGURE 3.2 Rule for changing zeros in Warshall’s algorithm.

All the elements of each matrix R® is computed from its immediate predecessor R&D. Let

rij(k), the element in the ith row and jth column of matrix R®, be equal to 1. This means that there
exists a path from the ith vertex v; to the jth vertex v; with each intermediate vertex numbered not
higher than k.

The first part of this representation means that there exists a path from v; to v with each
intermediate vertex numbered not higher than £ — 1 (hence, rik(k_l) = 1), and the second part means
that there exists a path from v to v; with each intermediate vertex numbered not higher than k — 1
(hence, ry* ™" =1).

Thus the following formula generas the elements of matrix R™ from the elements of matrix
R&D.

kY (k—1) {k—1) (k-1
Nii =T or ("m and ry;)
ApplyingWarshall’s algorithm by hand:
e Ifanelementr;is1in R*Y it remains 1 in R%.
e [Ifan element r; is 0 in R*™", it has to be changed to 1 in R* if and only if the element in its
row i and column & and the element in its column j and row k are both 1°s inR*".

ALGORITHM Warshall(A[1..n, 1..n])
/Tmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R(O) —A
for k<1 ton do
fori<1 tondo
forj <1 tondo
R[4, j 1<R*™V[, j 1 or R*V[L, k] and RV, 1)
return R

Warshall’s algorithm’s time efficiency is only om). Space efficiency is O(nd). i.e matrix size.

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, Folyfeclimc & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.5

b

-\H‘.
d ™

1’s reflect the existence of paths with no
intermediate vertices (R is just the
adjacency matrix); boxed row and column
are used for getting R

0o oW
bl R e B e]

)
S

Rem— A&

I’s reflect the existence of paths with
intermediate vertices numbered not higher
than 1, i.e., just vertex a (note a new path
from d to b); boxed row and column are

used for getting R,

RN =

O Ol=lo B oo =0l

OO o
— olo|lo o

I’s reflect the existence of paths with
intermediate vertices numbered not higher
0 | than 2, i.e., a and b (note two new paths);

1 b(()ged row and column are used for getting
R™.

— ek K

—-:::.G—-D'-l-ac:ﬁc::—*|c- oo olulo

e R s

o

d
1] I’s reflect the existence of paths with
R 1 intermediate vertices numbered not higher
T 0 than 3, i.e., a, b, and ¢ (no new paths);
1 boxed row and column are used for getting

N J R,

-0 O O 0 |—l'EIDD|F':|

oo oo

d

1 I’s reflect the existence of paths with

Q) _ 1 intermediate vertices numbered not higher
0
1

than 4, i.e., a, b, ¢, and d (note five new
paths).

oo oW
—) = =
= (O = = ()

FIGURE 3.3 Application of Warshall’s algorithm to the digraph shown. New 1°’s are in bold.

FLOYD’S ALGORITHM (All-Pairs Shortest-Paths Problem)

Floyd’sl algorithm is an algorithm for finding shortest paths for all pairs in a weighted
connected graph (undirected or directed) with (+/-) edge weights.

A distance matrix is a matrix (two-dimensional array) containing the distances, taken
pairwise, between the vertices of graph.

The lengths of shortest paths in an n X n matrix D called the distance matrix: the element dj;
in the ith row and the jth column of this matrix indicates the length of the shortest path from the ith
vertex to the jth vertex.

We can generate the distance matrix with an algorithm that is very similar to Warshall’s
algorithm is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through
a series of n X n matrices:
D@ .., D&Y p® . p»
The element dij(k) in the ith row and the jth column of matrix DY (i,j=1,2,...,n k=01,
., n) is equal to the length of the shortest path among all paths from the ith vertex to the jth
vertex with each intermediate vertex, if any, numbered not higher than k.

Steps to compute D, ..., D&Y, p® .. D™

WWW.AUA”E”Hgg.COH’l SEUHy materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

Design and Analysis of Algorithms Unit 111 3.6

e The series starts with D”, which does not allow any intermediate vertices in its

paths; hence, DY is simply the weight matrix of the graph.

As in Warshall’s algorithm, we can compute all the elements of each matrix p®
from its immediate predecessor p* b,

The last matrix in the series, D™, contains the lengths of the shortest paths among
all paths that can use all n vertices as intermediate and hence is nothing other than

the distance matrix.

Let dij(k) be the element in the ith row and the jth column of matrix D®. This means that
dij(k) is equal to the length of the shortest path among all paths from the ith vertex v; to the jth

vertex v;j with their intermediate vertices numbered not higher than k.

e
P e e e U S NN P
[w |
i i
| .
L _
% ,I"'*. == [
g " A = g
i i =
&, r
Lo g
vy
L,

FIGURE 3.4 Underlying idea of Floyd’s algorithm.

The length of the shortest path can be computed by the following recurrence:

{k—1)

(k1)
ffr- &

+ {fU

| fork =1, df}”: w;;

(k) . k—1)
d;;’ = min|d, i

(3] t

ALGORITHM Floyd(W[1..n, 1..n])
//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D «—W //is not necessary if W can be overwritten
for k<1 ton do
fori<1 tondo
forj <1 tondo
D1, j J«min{D[i, j], D[i, k]+ D[k, j]}
return D

Floyd’s Algorithm’s time efficiency is only o). Space efficiency is O(n?). i.e matrix size.

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, Folyfeclimc & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.7

£ 2 B a8 b e d_
\”""'\ /} - @110] = 3 || Lengths of the shortest paths with no
3| 67 P 21 0 e e | jntermediate vertices (D is simply the
- . - :‘3’ 7 0 [1:] weight matrix).
cr——» d) d oo oo
S ST RIS | =] |
a b c d
2] 0 =] 2 o | Lengths of the shortest paths with
. b|[2 [0] 5 =] intermediate vertices numbered not higher
D = | o T W than 1, i.e., just @ (note two new shortest
4l & |=| 9 @ | pathsfromb tocand fromdtoc).
a b ¢ d_
2| O 5 e Lengths of the shortest paths with
D@ — bl 2 0 |5] = | intermediate vertices numbered not higher
c| 9 7 10| 1] than 2, i.e., a and b (note a new shortest
d| & == [9] 0 | pathfrom cto a).
a b ¢ d4d._]
2 o 10 23 [4|] Lengths of the shortest paths with
bl 2 o 5 |gl|| intermediate vertices numbered not higher
(3 = .
D= cl @ 7 o ||| than 3, ie., a, b, and ¢ (note four new
d |5 16 9 |0 shortest paths from a to b, from a to d,
L - from b to d, and from d to b).
a b c d
al 0 10 3 4 | Lengths of the shortest paths with
D4 — bl 2 0 5 B | intermediate vertices numbered not higher
= S - than 4, i.e., a, b, ¢, and d (note a new
dl & 18 9 0 | ghortest path from c to a).

FIGURE 3.5 Application of Floyd’s algorithm to the digraph shown. Updated elements are shown
in bold.

3.3 OPTIMAL BINARY SEARCH TREES

A binary search tree is one of the most important data structures in computer science. One
of its principal applications is to implement a dictionary, a set of elements with the operations of
searching, insertion, and deletion.

% " ”O\
Ej{ (47 O

oy

©

FIGURE 3.6 Two out of 14 possible binary search trees with keys A, B, C, and D.

Consider four keys A, B, C, and D to be searched for with probabilities 0.1, 0.2, 0.4, and
0.3, respectively. Figure 3.6 depicts two out of 14 possible binary search trees containing these
keys.

WWW.AIIA ngg.com study materials 10r Anna University, rolytecnnic chool

CS6404 Design and Analysis of Algorithms Unit 111 3.8

The average number of comparisons in a successful search in the first of these trees is 0.1 .
1+402.2+04.3+0.3.4=2.9, and for the second one itis 0.1 .2+0.2.1+0.4.2+0.3.3=2.1.
Neither of these two trees is optimal.

The total number of binary search trees with n keys is equal to the nth Catalan number,

cin) = (;H) forn=0 cili=1
nm+ 1\ n
c¢(m)=(2n)!/(n+1)!n!

Let ay, . . ., a, be distinct keys ordered from the smallest to the largest and let Pl
pn be the probabilities of searching for them. Let C(i, j) be the smallest average number of
comparisons made in a successful search in a binary search tree 7; / made up of keys a; . . ., g,
where i, j are some integer indices, 1<i<j <n.

ON
o ‘x__/'
b
/ \ 7
.l'
,.' Optimal \\'- -"'Ir Optimal "-

BST for / BSTfor %
.-"l- a5, - PR \ / (=TS, [T "'.,‘.
'] !
/ ‘ \

FIGURE 3.7 Binary search tree (BST) Wlth root a; and two optimal binary search subtrees
Tik_l and Tk+1j.

Consider all possible ways to choose a root ax among the keys al, ce . For such a binary
search tree (Figure 3.7), the root contains key ax, the left subtree T, i contams keys aj, ..., Ak
optimally arranged, and the right subtree T x+; ' contains keys a4, . . . , aj also optimally arranged.

If we count tree levels starting with 1 to make the comparison numbers equal the keys’
levels, the following recurrence relation is obtained:
k—1
C(i, j)= min 4;:;_ 1+ p,-(levelofa, inT 1 +1)

I" &<

s=i

+ Z P, - (level of a; in Tf._] + 13}
F=k+1
k—1

== muHZp., level of a, in T" Jr Z P, - level of a, in T.n]—-—Zp,
v=k4+1

= mmiC[r k—1D+Clk+ 1, Jr1|J+Z:pH

5=

J
Cii, j)= min [C{i, k — 1)+ C{k+1, j forl<i<j=m
(i, j) Irﬁmﬁ (i)4k J.IJ]+‘§I_,H_H orl<i<j<n
We assume in above formula that C(i, i — 1) =0 for 1<i <n + 1, which can be interpreted as
the number of comparisons in the empty tree. Note that this formula implies that C(i, i) = p; for 1<1
<n, as it should be for a one-node binary search tree containing a;.

WWW.AUA”E”Hgg.COH’l SEUHy materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.9

0 1 n
0 e goal
0 (k]
I T A & 4 |CLf]
I
s =
e >
e =
o S P
n+1 0

FIGURE 3.8 Table of the dynamic programming algorithm for constructing an optimal binary
search tree.

The two-dimensional table in Figure 3.8 shows the values needed for computing C(i, j).
They are in row i and the columns to the left of column j and in column j and the rows below row i.
The arrows point to the pairs of entries whose sums are computed in order to find the smallest one
to be recorded as the value of C(i, j). This suggests filling the table along its diagonals, starting with
all zeros on the main diagonal and given probabilities pi, 1< 1 < n, right above it and moving
toward the upper right corner.

ALGORITHM OptimalBST(P [1..n])
//Finds an optimal binary search tree by dynamic programming
//Input: An array P[1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
// optimal BST and table R of subtrees’ roots in the optimal BST
fori<1 tondo
Cli,1—1]«0
C[i, i]«P[i]
R[i, i]«i
C[n+1,n]«0
for d <—1 ton — 1 do //diagonal count
fori<—1ton—ddo
je—itd
minval«—oo
for k<—i to j do
if C[i, k — 1]+ C[k + 1, j]< minval
minval«—CJi, k — 1]+ C[k + 1, j]; kmin<k
R[i, j J«—kmin
sum<«—P[i];
fors—i+1tojdo
sum<«—sum + P[s]
C[1, j]«<minval + sum

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.10

return C[1, n], R

The algorithm’s space efficiency is clearly quadratic, ie, : G)(n3); the time efficiency of this
version of the algorithm is cubic. It is Possible to reduce the running time of the algorithm to @(n?)

by taking advantage of monotonicity of entries in the root table, i.e., R[i,j] is always in the range
between R[i,j-1] and R[i+1,j]

EXAMPLE: Let us illustrate the algorithm by applying it to the four-key set we used at the
beginning of this section:

key A B C D
probability 0.1 0.2 0.4 0.3
The initial tables are:

main table root table
0 | Z 3 4 a 1 2 F 4
1 |0 G 1
2 0 0.2 2 2
3 0 0.4 3
4 L] 0.3 4 4
5 a 5

Let us compute C(1, 2):
k=1 Cc(,004+C2,2)+Y: p,=04+02403=05
€(1, 2) = min -
k=2 Cc(LH+C3,2)+3Y . ,p,=014+04+03=04
=4,

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the

optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a successful
search in this tree is 0.4.

We arrive at the following final tables:

main table root

b

table
0 I 2 3 4 0 1 Z “JF i
110 G1 04 1.1 .7 I = F 3
2] 0.2 08 1.4 2 Zx i 3
3 0 04 1.0 3 3: 43
A 0 03 A A
5 a 5

Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since R(1,
4) = 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of keys
A and B, and its right subtree contains just key D. To find the specific structure of these subtrees,
we find first their roots by consulting the root table again as follows. Since R(1, 2) = 2, the root of
the optimal tree containing A and B is B, with A being its left child (and the root of the one node

tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one-node optimal tree is its only key D. Figure
3.10 presents the optimal tree in its entirety.

/__Ja' N

r,- ‘J|
% _/I

FIGURE 3.10 Optimal binary search tree for the above example.

WWW.AIIA ngg.com study materials 10r Anna University, rolytecnnic chool

CS6404 Design and Analysis of Algorithms Unit 111 3.11

3.4 KNAPSACK PROBLEM AND MEMORY FUNCTIONS
Designing a dynamic programming algorithm for the knapsack problem:

Given n items of known weights wy, . . ., w, and values vy, . . ., v, and a knapsack of
capacity W, find the most valuable subset of the items that fit into the knapsack.

Assume that all the weights and the knapsack capacity are positive integers; the item values
do not have to be integers.

0/ 1 knapsack problem means, the chosen item should be either null or whole.

Recurrence relation that expresses a solution to an instance of the knapsack problem
Let us consider an instance defined by the first i items, 1< i < n, with weights wy, . . ., w;
values vy, . . ., v;, and knapsack capacity j, 1 <j < W. Let F(i, j) be the value of an optimal solution
to this instance, i.e., the value of the most valuable subset of the first i items that fit into the
knapsack of capacity j. We can divide all the subsets of the first i items that fit the knapsack of
capacity j into two categories: those that do not include the ith item and those that do. Note the
following:
1. Among the subsets that do not include the ith item, the value of an optimal subset is, by
definition, F(i — 1, j).
2. Among the subsets that do include the ith item (hence, j — w; > 0), an optimal subset is made

up of this item and an optimal subset of the first i — 1 items that fits into the knapsack of
capacity j — w;. The value of such an optimal subset is vi + F(i— 1, j — w;).

Thus, the value of an optimal solution among all feasible subsets of the first I items is the
maximum of these two values. Of course, if the ith item does not fit into the knapsack, the value of
an optimal subset selected from the first i items is the same as the value of an optimal subset
selected from the first i — 1 items. These observations lead to the following recurrence:

max{F(i —1, j), vy, + Fi —1,j —w;)} ifj—w; =0,

FGD= Bi—1.) if j —w, <0.

It is convenient to define the initial conditions as follows:
F(0,j)=0forj>0 and F(i, 0) = 0 for i > 0.
Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into the
knapsack of capacity W, and an optimal subset itself.
For F(i, j),compute the maximum of the entry in the previous row and the same column and
the sum of vi and the entry in the previous row and w; columns to the left. The table can be filled
either row by row or column by column.

ALGORITHM DPKnapsack(w[!..n], v[1..n], W)
var V[0..n,0..W], P[l..n,1..W]: int
forj:=0to Wdo

VI0,]1:=0
fori.=0tondo
VI[i,0] :=0

fori.=1tondo
forj:=1to Wdo

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, Folyfeclimc & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.12

if wli] <jand v[i] + V[i-1,j-w[i]] > V[i-1,j] then
VIij] = vlil + VIi-Lj-wlill; Pli,j] :=j-wli]
else
VIij] := VIi-1,j]; Plij] :=j
return V[n, W] and the optimal subset by backtracing

Note: Running time and space: O(nW).

Table3.1 for solving the knapsack problem by dynamic programming.

0 J—w; J W
0 0 0 0 0
i—1 | 0 Fii—1, j—w;) Fii=1,)
wi vi 0 F(,)
n 0 goal

EXAMPLE 1 Let us consider the instance given by the following data:
Table 3.2 An instance of the knapsack problem:

item weight value capacity
1 2 $12
2 1 $10
W=5
3 3 $20
4 2 $15

The maximal value is F(4, 5) = $37. We can find the composition of an optimal subset by
backtracing (Back tracing finds the actual optimal subset, i.e. solution), the computations of this
entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution along
with an optimal subset for filling 5 — 2 = 3 remaining units of the knapsack capacity. The value of
the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal subset. Since F(2, 3) >
F(1, 3), item 2 is a part of an optimal selection, which leaves element F(1, 3 — 1) to specify its
remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is the final part of the optimal
solution {item 1, item 2, item 4}.

Table 3.3 Solving an instance of the knapsack problem by the dynamic programming algorithm.

Capacity j

i 0 1 2 3 4 5

0 0 0 0 0
wl=2vl=12 1 0 0 12 |12 |12 |12
w2=1,12=10 2 0 10 |12 |22 |22 |22
w3 =3,13=20 3 0 10 112 |22 |30 |32
wd =2 v4=15 4 0 10 115 |25 |30 |37

WWW.AUA”E”Hgg.COH’l SEUHy materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.13

Memory Functions

The direct top-down approach to finding a solution to such a recurrence leads to an
algorithm that solves common subproblems more than once and hence is very inefficient.

The bottom up fills a table with solutions to all smaller subproblems, but each of them is
solved only once. An unsatisfying aspect of this approach is that solutions to some of these smaller
subproblems are often not necessary for getting a solution to the problem given.

Since this drawback is not present in the top-down approach, it is natural to try to combine
the strengths of the top-down and bottom-up approaches. The goal is to get a method that solves
only subproblems that are necessary and does so only once. Such a method exists; it is based on
using memory functions.

This method solves a given problem in the top-down manner but, in addition, maintains a
table of the kind that would have been used by a bottom-up dynamic programming algorithm.

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that
they have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the
method checks the corresponding entry in the table first: if this entry is not “null,” it is simply
retrieved from the table; otherwise, it is computed by the recursive call whose result is then
recorded in the table.

The following algorithm implements this idea for the knapsack problem. After initializing
the table, the recursive function needs to be called with i = n (the number of items) and j = W (the
knapsack capacity).

ALGORITHM MFKnapsack(i, j)
//Tmplements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first items being considered
/1 and a nonnegative integer j indicating the knapsack capacity
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input arrays Weights [1..n], Values[1..n],

% and table F[0..n, 0..W] whose entries are initialized with —1’s except for
% row 0 and column 0 initialized with 0’s
if F[i,j <0

if j <Weights[i]
value«—MFKnapsack(i — 1, j)
else
value«—max(MFKnapsack(i — 1, j),
Values[i]+ MFKnapsack(i — 1,] “-Weights[i]))
F[i,j J«—value
return F[i, j]

EXAMPLE 2 Let us apply the memory function method to the instance considered in Example 1.

Capacity j

I 0 1 2 3 4 5

0 0 0 0
wl=2v1=12 |1 0 0 12 12 12 12
w2=1,v2=10 |2 0 - 12 22 - 22
w3=3v3=20 |3 0 - - 22 - 32
wd=2v4=15 |4 0 - - - - 37

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.14

Only 11 out of 20 nontrivial values (i.e., not those in row 0 or in column 0) have been
computed. Just one nontrivial entry, V (1, 2), is retrieved rather than being recomputed. For larger
instances, the proportion of such entries can be significantly larger.

3.5 GREEDY TECHNIQUE

The greedy approach suggests constructing a solution through a sequence of steps, each
expanding a partially constructed solution obtained so far, until a complete solution to the problem
is reached. On each step and this is the central point of this technique.

The choice made must be:

e feasible, i.e., it has to satisfy the problem’s constraints

e Jocally optimal, i.e., it has to be the best local choice among all feasible choices available on
that step

e jrrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm

Greedy Technique algorithms are:
Prim’s algorithm

Kruskal's Algorithm
Dijkstra's Algorithm
Huffman Trees

e o o o

Two classic algorithms for the minimum spanning tree problem: Prim’s algorithm and
Kruskal’s algorithm. They solve the same problem by applying the greedy approach in two
different ways, and both of them always yield an optimal solution.

Another classic algorithm named Dijkstra’s algorithm used to find the shortest-path in a
weighted graph problem solved by Greedy Technique . Huffman codes is an important data
compression method that can be interpreted as an application of the greedy technique.

The first way is one of the common ways to do the proof for Greedy Technique is by
mathematical induction.

The second way to prove optimality of a greedy algorithm is to show that on each step it does
at least as well as any other algorithm could in advancing toward the problem’s goal.

Example: find the minimum number of moves needed for a chess knight to go from one corner of a
100 x 100 board to the diagonally opposite corner. (The knight’s moves are L-shaped jumps: two
squares horizontally or vertically followed by one square in the perpendicular direction.)

A greedy solution is clear here: jump as close to the goal as possible on each move. Thus, if
its start and finish squares are (1,1) and (100, 100), respectively, a sequence of 66 moves such as
(1, D-3,2)—@&, 4 —...—(97,97) — (99, 98) — (100, 100) solves the problem(The number k of
two-move advances can be obtained from the equation 1+ 3k = 100).

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, Folyfeclimc & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.15

Why is this a minimum-move solution? Because if we measure the distance to the goal by
the Manhattan distance, which is the sum of the difference between the row numbers and the
difference between the column numbers of two squares in question, the greedy algorithm decreases
it by 3 on each move.

The third way is simply to show that the final result obtained by a greedy algorithm is
optimal based on the algorithm’s output rather than the way it operates.

Example: Consider the problem of placing the maximum number of chips on an 8 X 8 board so that
no two chips are placed on the same or adjacent vertically, horizontally, or diagonally.

FIGURE 3.12 (a) Placement of 16 chips on non-adjacent squares. (b) Partition of the board
proving impossibility of placing more than 16 chips.

It is impossible to place more than one chip in each of these squares, which implies that the
total number of nonadjacent chips on the board cannot exceed 16.

3.6 PRIM’S ALGORITHM

A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a
tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a
minimum spanning tree is its spanning tree of the smallest weight, where the weight of a tree is
defined as the sum of the weights on all its edges. The minimum spanning tree problem is the
problem of finding a minimum spanning tree for a given weighted connected graph.

= LI e T oy 1 5 o S
€ S, 2\ (@——® " 2
EJ \‘\E\V i 5 2
-~ P T ™ \/’_\I
(=D (—D (——@ o ©

agraph wiT;) =8 wilzl =9 wilgl =8

FIGURE 3.13 Graph and its spanning trees, with 7'1 being the minimum spanning tree.

The minimum spanning tree is illustrated in Figure 3. If we were to try constructing a
minimum spanning tree by exhaustive search, we would face two serious obstacles. First, the
number of spanning trees grows exponentially with the graph size (at least for dense graphs).
Second, generating all spanning trees for a given graph is not easy; in fact, it is more difficult than
finding a minimum spanning tree for a weighted graph.

WWW.AUA”E”Hgg.COH’l SEUHy materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.16

Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding
subtrees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from
the set V of the graph’s vertices. On each iteration, the algorithm expands the current tree in the
greedy manner by simply attaching to it the nearest vertex not in that tree. The algorithm stops after
all the graph’s vertices have been included in the tree being constructed.

ALGORITHM Prim(G)
//Prim’s algorithm for constructing a minimum spanning tree
/Input: A weighted connected graph G = {V, E}
//Output: E7, the set of edges composing a minimum spanning tree of G
Vr—{vo} //the set of tree vertices can be initialized with any vertex
Er—®
fori<—1to|V|—1do
find a minimum-weight edge e* = (v*, u*) among all the edges (v, u)
such that visin Vranduisin V- Vg
Vi=Viu {u')
Er—EU ('}
return Er

If a graph is represented by its adjacency lists and the priority queue is implemented as a
min-heap, the running time of the algorithm is O(|E| log |V |) in a connected graph, where [V| — 1<
|El.

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, Folyfeclimc & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.17

Tree vertices Remaining vertices Ilustration

af—, —) b(a, 3) c(—. o0) d(—. 20)
e(a, 6) f(a,5)

bia, 3) c(h, 1) d(—, c0) e(a, 6)
f(b, 4)
c(b, 1) d(c. 6) e(a, 6) f(b, 4)
' 1 g
f(b. 4) d(f, 5) e(f, 2) e RN o
6 ~ 5 :
hil\ x_"|/' x__‘_,k'_']'_,"
7 -
B T~ _,//B
i\EJ:
B] g
e(f, 2) d(f. 5) / 5 6
- 5 - 5 ~,
'{«:f',z_x i 2
H“a‘)
|\‘.-_:l
d(f, 5)

FIGURE 3.14 Application of Prim’s algorithm. The parenthesized labels of a vertex in the middle
column indicate the nearest tree vertex and edge weight; selected vertices and edges are in bold.

www.AUAUElfngg.com SEUHy materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.18

3.7 KRUSKAL'S ALGORITHM

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph
G= {V, E} as an acyclic subgraph with |V| — 1 edges for which the sum of the edge weights is the
smallest. the algorithm constructs a minimum spanning tree as an expanding sequence of subgraphs
that are always acyclic but are not necessarily connected on the intermediate stages of the
algorithm.

The algorithm begins by sorting the graph’s edges in nondecreasing order of their weights.
Then, starting with the empty subgraph, it scans this sorted list, adding the next edge on the list to
the current subgraph if such an inclusion does not create a cycle and simply skipping the edge
otherwise.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph
G = (V, E) as an acyclic subgraph with |V| — 1 edges for which the sum of the edge weights is the
smallest.

ALGORITHM Kruskal(G)
//Kruskal’s algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G=(V, E)
//Output: Ey, the set of edges composing a minimum spanning tree of G
sort £ in nondecreasing order of the edge weights w(e;j1) <...<w(e;g)

Er— ®; ecounter <— 0 /fnitialize the set of tree edges and its size
K<0 //initialize the number of processed edges
while ecounter < |V|— 1 do

k—k+1

if ErU {ey} is acyclic

Ey— EpU {ey}; ecounter < ecounter + 1

return E;

The initial forest consists of |V | trivial trees, each comprising a single vertex of the graph.
The final forest consists of a single tree, which is a minimum spanning tree of the graph. On each
iteration, the algorithm takes the next edge (u, v) from the sorted list of the graph’s edges, finds the
trees containing the vertices u and v, and, if these trees are not the same, unites them in a larger tree
by adding the edge (u, v).

Fortunately, there are efficient algorithms for doing so, including the crucial check for
whether two vertices belong to the same tree. They are called union-find algorithms. With an
efficient union-find algorithm, the running time of Kruskal’s algorithm will be O(|E| log |E]).

WWW.AIIA ngg.com study materials 10r Anna University, rolytecnnic chool

CS6404 Design and Analysis of Algorithms Unit 111 3.19

Tree edges Sorted list of edges Hlustration

be ef ab bf cf aj df ae cd de

1234435668/

- J\/\

'C 34,
z
,\
_/’

be bc ef ab bf cof af df ae cd de
1 1 2 3 4 4 5 5 6 6 =% a7 S R 5%
3 4 /Lx
b = b ~
O'n \> /_/\EU
] A E
g
ef bc ef ab bf cf af df ae cd de
2 1 2 3 4 4 5 5 6 6 8 .-"5\1—r”5“
AT
(EA : B 5/}3
2
Hﬁhéhx _.-d"'ﬂfg
@\r
o
ab bc ef ab bf cf af df ae cd de
3 2 3% & 3 B 6 8 (b] (o)
3 4 4.7 NP
—~¢ 5 e 5 7
Him C d)
“\ 2 'H_f/—/&
5] MEV 8
hf bc ef ab bf cf af df ae cd de
4 {1 2 3 4 4 5 5 6 6 8
df
5

FIGURE 3.15 Application of Kruskal’s algorithm. Selected edges are shown in bold.

WWW. ngg.com study materials 10r Anna University, rolytecnnic chool

CS6404 Design and Analysis of Algorithms Unit 111 3.20

3.8 DIJKSTRA'S ALGORITHM

e Dijkstra’s Algorithm solves the single-source shortest-paths problem.

e For a given vertex called the source in a weighted connected graph, find shortest paths to all
its other vertices.

e The single-source shortest-paths problem asks for a family of paths, each leading from the
source to a different vertex in the graph, though some paths may, of course, have edges in
common.

e The most widely used applications are transportation planning and packet routing in
communication networks including the Internet.

e [t also includes finding shortest paths in social networks, speech recognition, document
formatting, robotics, compilers, and airline crew scheduling.

e In the world of entertainment, one can mention pathfinding in video games and finding
best solutions to puzzles using their state-space graphs.

e Dijkstra’s algorithm is the best-known algorithm for the single-source shortest-paths
problem.

ALGORITHM Dijkstra(G, s)
//Dijkstra’s algorithm for single-source shortest paths
/Input: A weighted connected graph G = (V, E) with nonnegative weights and its vertex s
//Output: The length dv of a shortest path from s to v and its penultimate vertex pv for every
% vertex vin V
Initialize(Q) //initialize priority queue to empty
for every vertex vin V
dv < oo; py < null
Insert (Q, v, dv) //initialize vertex priority in the priority queue
Ds < 0; Decrease(Q, s, dy) //update priority of s with d
VT<—)]
fori —0to|V|—1do
u <« DeleteMin(Q) //delete the minimum priority element
Vie—VrU {u')}
for every vertex u m V — VT that is adjacent to u~ do
if du + w(u u) <d,
d, <—du +w(u ,) u); pu<—u
Decrease(Q, u, d,)

The time efficiency of Dijkstra’s algorithm depends on the data structures used for
implementing the priority queue and for representing an input graph itself. It is in ® (|V 1*) for
graphs represented by their weight matrix and the priority queue implemented as an unordered
array. For graphs represented by their adjacency lists and the priority queue implemented as a min-

heap, it is in O(|E| log |V).
u')\

WWW.AIIA ngg.com study materials 10r Anna University, rolytecnnic chool

CS6404 Design and Analysis of Algorithms Unit 111 3.21

Tree vertices Remaining vertices lustration
: 4 =
a(—, 0) b(a, 3) c(—, oc) d(a,7) e(—, c0) 2 z 7
3
/ 2 /
(&) oS i -:;1'
R 7 el 4 N
_ Y, 4 o
b(a, 3) c(b,3+4) d(b, 3+2) e(—, o0) /LD .8
2 5
o it &)

d(b. 5) c(b.7) e(d.5+4) .
~
‘E,f'
c(b, 7) e(d, 9)
3]
I\E_,-’I
e(d. 9

FIGURE 3.16 Application of Dijkstra’s algorithm. The next closest vertex is shown in bold

The shortest paths (identified by following nonnumeric labels backward from a destination
vertex in the left column to the source) and their lengths (given by numeric labels of the tree
vertices) are as follows:

Fromatob:a—boflength 3
Fromatod:a—b—doflength 5
Fromatoc:a—b—coflength 7
Fromatoe:a—b—d—eoflength 9

3.9 HUFFMAN TREES

To encode a text that comprises symbols from some n-symbol alphabet by assigning to each
of the text’s symbols some sequence of bits called the codeword. For example, we can use a fixed-
length encoding that assigns to each symbol a bit string of the same length m (m > log2 n). This is
exactly what the standard ASCII code does.

Variable-length encoding, which assigns codewords of different lengths to different
symbols, introduces a problem that fixed-length encoding does not have. Namely, how can we tell
how many bits of an encoded text represent the first (or, more generally, the ith) symbol? To avoid
this complication, we can limit urselvesto the so-called prefix-free (or simply prefix) codes.

In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence, with
such an encoding, we can simply scan a bit string until we get the first group of bits that is a
codeword for some symbol, replace these bits by this symbol, and repeat this operation until the bit
string’s end is reached.

WWW.AUA”E”Hgg.COH’l SEUHy materials 10r Anna Ul’llVGI’SlEy, FOlyECC”l’llC & SCNoo!

CS6404 Design and Analysis of Algorithms Unit 111 3.22

Huffman’s algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given.
Record the frequency of each symbol in its tree’s root to indicate the tree’s weight.

(More generally, the weight of a tree will be equal to the sum of the frequencies in
the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with
the smallest weight (ties can be broken arbitrarily, but see Problem 2 in this
section’s exercises). Make them the left and right subtree of a new tree and record
the sum of their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It defines in the
manner described above is called a Huffman code.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence
frequencies in a text made up of these symbols:

symbol | A B C D _
frequency | 035 0.1 0.2 0.2 0.15
The Huffman tree construction for this input is shown in Figure 3.18

[0.15 S .z 025
B . C D A
i 5 =
oz 0.z e 035
[(¥] ;;-___/\ o

0.1 9.16
B _
(028 035 oAy
N = D
s h
0.1 0.15 oz 0.2
B — C D

0. fo ey 0.25 |
C D /_x\ e
0.1 0.15
B =
l"-f:lp_l'_-:l

=
= |"E;_25I
Iy

G
i
=

)
B

FIGURE 3.18 Example of constructing a Huffman coding tree.

WWW.AIIA ngg.com study materials 10r Anna University, rolytecnnic chool

CS6404 Design and Analysis of Algorithms Unit 1l 3.23
The resulting codewords are as follows:

symbol A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

codeword 11 100 00 01 101

per symbol in this codeis 2.0.35+3.0.1+2.0.2+2.0.2+3.0.15=2.25.

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD. With
the occurrence frequencies given and the codeword lengths obtained, the average number of bits

We used a fixed-length encoding for the same alphabet, we would have to use at least 3 bits
per each symbol. Thus, for this toy example, Huffman’s code achieves the compression ratio - a
standard measure of a compression algorithm’s effectiveness of (3— 2.25) /3 + 100% = 25%. In
other words, Huffman’s encoding of the text will use 25% less memory than its fixed-length
encoding.

Running time is O(n log n), as each priority queue operation takes time O(log n).

Applications of Huffman’s encoding
Huffman’s encoding is a variable length encoding, so that number of bits used are lesser

1.

et

than fixed length encoding.

Huffman’s encoding is very useful for file compression.

Huffman’s code is used in transmission of data in an encoded format.
Huffman’s encoding is used in decision trees and game playing.

WWW.AUA”E”Hgg.COH’I SEtu materials 10r Anna Ul’llVGI’SlEy, Folyfeclimc & SCNoo!

