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UNIT- IV
Topic : 1 Algebraic Structures

1)Define Binary Operation with Example:

Let A be any non-empty sets. The binary operation * is a function from
A x A i.e. a rule which assigns to every pair (a, b) € A x A, a unique element
axb € A.

Example:

Usual addition, multiplication are binary operation defined on the set of real
numbers.

Matrix addition and Matrix multiplication are binary operation on the set of
2 X 2 real matrices.

2) Define Algebraic System with Example:

A non-empty set A together with one or more n-ary operations * defined on it,
is called an algebraic system or algebraic structure or Algebra.

We denote it by (A, *)
Note: +, —, -, X, * , U, N etc.., are some of binary operations.

Properties of Binary operations:
Let the binary operation be * : Ax A — A.

Then we have the following properties

1) Closure Property:
ax beA foralla, beA.

2) Associativity:
(@* b)y*xc=ax* (bxc) foralla, b, ce€A.

3) Identity element:
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a*xe=e*a=a,forall a e A where e is called the identity element.

4) Inverse element:
Ifa*xb=0>b*a=e, then b is called the inverse of a and it is denoted
by a7}, (i.e. b= a™).

5) Commutative:

axb=b*a foralla, beA.

6) Distributive properties: foralla, b, c € A.

(i) a*x(b-c)= (axb)(axc)
(i) (b*c)*xa=(b*xa)"* (cx a)

7) Cancellation properties: foralla, b, c € A

) a* b=a* c=>b=c
(i) bxa=c *xa=b =c

Note:

[Left distributive law]
[Right distributive law]

[Left cancellation law]
[Right cancellation law]

If the binary operations defined on G is + and x, then we have the following table

Properties Foralla, b, c € (G, +) For all a, b, c € (G, x)
1. Closure a+b eG axbegG
2. Associativity (@a+b)+c=a+(b+c (@axb)xc=ax(bxc)
3. Identity element a+0=0+a=a, Here 0 is axl=1xa=a, Herelis
Additive Identity Multiplicative Identity
4. Inverse element | a+(-a) = 0, 1
ax = xa=1, Here
Here (—a) is Additive a a
i 1
Inverse is multiplicative inverse
a
5. Commutative a+b=b+a axb=bxa
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Notation:

Zorl | The set of all integer.

Q The set of all rational number.

R The set of all real number.

R* | The set of all positive real number.

Q* | The set of all positive rational number.
C The set of all complex humber.

Example 1:
The set of integers Z with the binary operations + and x is an algebraic system

since it satisfies all the above properties.

Example 2:
The set of real numbers R with binary operations + and x is an

algebraic system.

3) Define Semi group with Example:
Definition: If a non-empty set S together with the binary operation *
satisfying the following two properties.
(a) Closure property
(b) Associative property
is called a semigroup. It is denoted by (S, *).

Example:
1. Let X be any non-empty set. Then the set of all functions from X to X
is the set XX, is a semigroup w.r.to *, the composition of functions.

2. (I, +), (I, x) are semigroups, where + is the usual addition and X is
the usual multiplication.

3. (P(A), N) and (P(A), U) are semigroups. Where P(A) is the powerset
of A (the set of all subsets of A).

4. N={0, 1, 2 ..} then (N, +), (N, x) are semigroups. N is not
a semigroup w.r.to the operation subtraction.
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Solved Examples:

1. Show that the set of all natural numbers N is a semigroup w.r.to
operation * defined by a * b = max {a, b}.
Solution:
N is closed under the operation * .
Fora, b, c eN

ax*x(bx*xc) =max{a max{b, c}} = max{a, b, c} (D)
(a *b)*c = max{max {a, b}, c}
(a *b)xc = max{a, b, c} (2)

From (1) and (2),
(@axb)*xc=ax(bx*xc),va, b ceN
. * is associative.

= (N, *) is a semigroup.

2. Show that the set of rational humbers Q is a semigroup for the operation
* definedbya *b =a+ b—ab.
Solution: Q is closed for * .
a*x(bx*xc)=ax*x(b+c—Dbc)
=a+b+c—-bc—a(b+c—-bc)
=a+b+c—ab—-bc—-ca + abc (1)
(@*b)*c=(@a+b—-ab)*xc
=a+b-ab+c-(a+b-ab)c
=a+ b+ c—ab-ac—-bc + abc (2)
From (1) and (2),
(@ax*b)*c=ax(bx*c),va, b ceqQ
=~ % is associative.

= (Q, *) is a semigroup.
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3. Show that the set of rational numbers Q is a semigroup for operation *

b
definedbya*b= __va beQ
2

Solution: Q is closed for .

a*(bx*xc)=a* be _ abc
R 2 4

(@*b)*c=__ xc=%¢
2 4

(@a*b)*c=ax*x(bx*c),Vva, b, ceqQ
~ * |S associative.

= (Q, *) is a semigroup.

4. Let (A, * ) be a semigroup. Show that for a, b, cin Aifa * c =c * a and

thenb*c=cx*xbthen(a*xb)*c=cx*x(a*Db).

Solution: L.H.S. (a *b) *xc=a * (b * ¢) [~ * is associative]
=a * (c *b) [*"b*c=c*Db]
=(a*xc)*xb [~ * is associative]
=(c*a)*b [*a*c=c* a]
=c* (a*Db) [+ * is associative]
=R.H.S.

5. Let (S5,*) be a commutative semigroup. If x * x = X, y * y =y, prove
that (x *y) * (x *y) =x * vy,
Solution: L.H.S.: (x * y) * (X *y)
=X * (y * (X * y))
=x* ((y * x) * y)
=x* ((x *y) *y)
=X * (x*(y * y))
=X * (X *y)
= (X *x) *y
= X ¥ Yy
= R.H.S.
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6. Let (S,*) be a commutative semigroup. If x * X = X, y * y =y, prove

that (x *y) * (x *y) =X * vy.

Solution: L.H.S.: (X *y) * (X *y)
=X * (y * (X * y))
=X * ((y * x) * y)
X * ((x *y)*y)
X * (X * (y * y))
X * (X *y)

(x *x) *y

X *y
R.H.S.

7. Let{{x, v}, -} be a semigroup where x - x = y. Show that

(Ix-y=y-x
(i) y - y=y.

Solution: (i) x - (X *x) = (x * X)X (Since - is associative)
Givenx - x =y
SXTYy =Yoo X
(ii)To prove: y - y=y
Since the set {x, y} is closed for operation -/,
x-y=x(or) x-y=y

Assume X -y = X

y-y=y-(x-x)
=(y " x) "X
= (X"y) X

Syry=y

Next consider the case x -y =y,
y-y=(X-x)-y

=X (X"y)
“Yy=Yy
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axb=#b*a
(i) Show that for everya €A, a * a =a
(ii) For every a € A, a * (b * a) =a.

(iii) Foreverya, b,c €A, (@ *b) *xc=a *c.

Solution:
(i) a*(bx*c)=(ax*xb)xc

Putb = aand c=a
a*(axa)=(a*a)*a

Since (A, *) is not commutative, a * a = a.

(ii ) Let us assume that b € A then
we haveforbeA, b x b =b.
Let a*x (b*x by=axb [“bxb=Db]
(a*xb)*b=a*b [+ associative]
Hencea *b =a (1) (Using Right Cancellation law)
~ ax*x(b*a)=(a*b)*a From [ associative]

=a*xa
=a

(iiy(@a*b)*c=ax*xc [a*b=a]
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Monoids

1)Define Monoid with Example:

A semigroup (S, *) with an identity element w.r.t. ** is called Monoid.
It is denoted by (M, *).

In other words, a non-empty set 'M' with respect to * is said to be a monoid,
if * satisfies the following properties.

(a) Closure property
(b) Associative property
(C) Identity property

Examples:

1.N={0, 1, 2 ...} then (N, +), (N, x) are monoids.

2. (Z, x), (Z, +) are monoids.

3. The set of even integers E= {......,—4,—2,0,2,4, ....}, Then (E, +) is a monoid
and (E, x) is a semigroup but not a monoid.

4. (P(A),u) is a monoid with identity element @.
(P(A),n) is a monoid with identity element A, where A is any set.

Problem:

2) Show that the set of integers, is a monoid for the operation * defined
by axb=a+b—ab, for a, b € 1.

Solution:

I is closed for the operation = .
Further * is a associative.

The element 0e I is the identity Element
Sincex*0=x4+0-x-0=xand 0*xx=0+x—0-x=%x,VX€EL

~ (I,x) is @ monoid with identity O€ L.
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1) Define Group with Example :

A non-empty set G with binary operation = is called a group if the following
axioms are satisfied.
1. *is associative, i.e.(axb)xc=ax*b*cVa,b,c€ G.
2. There exists an elementee Gsuchthataxe=exa=a,vVa€eG.
(e is the identity element).
3. For every a € G, 3 an element a'l€ G, such that axa'=a-1*xa=e.
(a lis called the inverse element of a).

2)Define Abelian Group (or) Commutative Group

A group (G, *) is called abelian if axb=b*a, va, b € G. i.e. *
is commutative in G.

Example:
1. (I, +) is a group called the additive group ofintegers.

2. M, (R), the set of all 2 x 2 matrices is a group w.r.to matrix addition.

3. The set of all non-singular 2 x 2 matrices is a group w.r.to matrix
multiplication.

4. The set of nt roots of unity {1, w, w?, ...... , W1} is a group w.r.to the
operation multiplication of complex numbers.

5. G={1,-1,i, -i}. In G, the operation *- " is defined by the following table.
Then (G, ) is an abelian group.

-i -i i 1 -1
Here *- " is the multiplication of complex numbers.

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School



www.AllAbtEngg.com

Examples :
1. Show that [Zs, +5] is an abelian group.

Solution: The table for addition modulo 5 is.

+s ([0] [1] [2] [3] [4]
[01 |[0] [ [21 [3]1 [4]
[11 (1] [2] (3] [4] [O]
[2]1 [[2] [31 [4] [0] [i]
[31 [[31 1[4 [0] [1] [2]
[41 [[4] [0] [1] [2] [3]

Q) Closure property:
[a] +5 [b]= remainder when the sum is divided by 5.

(i)  Associative Property:
From the table for [a], [b], [c] € Zs
[a] +5([b] +s5 [c]) = ([a] +s5 [b]) +s5[c]

(iii) Identity:
[0] € Zsis the identity

(iv) Inverse:
The inverse of [1] is [4].
The inverse of [2] is [3].
The inverse of [3] is [2].
The inverse of [4] is [1].
The element [0] € Zs has self-inverse.

(v) Commutative property:
Further [a] +5 [b] = [b] +5[a],v [a], [b] € Zs.

. (Zs, +5) is an abelian group.
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2. Show that [{1,2, 3, 4}, xs] is an abelian group.

Solution: The table for the xs is as follows
Zs = {1,2,3,4} and xs is multiplication operation

X5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Q) Closure Property:
Here a € Zsmeans a = [a]
a xs b = remainder when ab is divisible by 5.

(i) Associative Property:

Fora, b, c € Zs.
aX5(bX5C) = (a X5b) X5 C

(iii)  Identity:
1 € Zs; is the identity element.

(iv) Inverse:

The inverse of 1 is 1
The inverse of 2 is 3
The inverse of 3 is 2
The inverse of4 is 4

(v) Commutative property:

Further a xsb=b xsa, va, b € Zs.
~ [{1,2, 3, 4}, xs] is an abelian group.
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Topic :3 Properties of Group

Property 1:
The identity element in a group is unique.

Proof: If (G, * ) be a group and e; and e, be two identity elements of G.
Letx € G; x*ei1=xand x* e =X

o Xx@1=X*¥ ey,

By using left cancellation law, we get e1 = e>

=~ Identity element is unique

Property 2:
The inverse of every element in a group is unique.

Proof: Let (G, * ) be a group, with identity element e.

Let b and c be inverses of a element a € G.
axb=b*xa=e
axc=Cc*a=e¢e
b=bx*e
=b * (@ * C)
=(bx*xa)*c
=ex*xC
b=c

Property 3:
If a is an element in a group (G, *) then (a1)! = a.

Property 4:( Reversal law)
If a and b are two elements in a group (G, *) then

(@*b)l=blx*al

[ prove (a * b) * (bl1*al)=eand (b!*al)*(a*b)=¢e]
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Property 5: Cancellation laws

In a group (G, *), for every a, b, c €G, then
(i) a* ¢ = b* c implies a=b (Right Cancellation law)

(i) cx a = cx b implies a=b (Left Cancellation law)

Property 6:
In a group (G, *), the equations x * a=b and a * y=b has unique solution.

Proof:

Consider x * a=b Post
multiplying by a!

X * (a * al) = bx al
l.e. Xx*e=bx*al
“X=bx*xagl

Proof of Uniqueness
Let x1 and x2 be two solutions of x * a= b.

Then x1 * a= b and x2 * a=b.

.'.Xl*a =X2*a

= X1=X2 [By Right cancellation law]

= The solution is unique.

In a similar manner, the equation a * y=b has a solutiony = al* b
and it has unique solution.

Examples
1. Show that a group (G, * ) is abelian iff (a* b)?= a? * b?

Solution: First we assume that (G, * ) is abelian,
(a* b)?=(a * b) * (a* b)
=a* (b * (a* b))

=a* ((b *
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Since G is abelian, a * b=b * a.
~(a * b)?=a * ((a * b) * b)
=(@x*a)*(b*b)
= a2 k b2

Conversely,
we assume that (a * b)%2= a2 * b2,

To prove : G is abelian
(a * b)?=a%* b?
(@*b)*(a*b)=(axa)x*(b*b)
a*(bx(ax*b))=ax(ax*(b*b))

b*x(a* b)=a *(b *Db) [by Left cancellation law]
(bxa)*b=(@x*xb)*b
bx a=a* b [by Right cancellation law]
a*xb=b*a,va beaqg
G is abelian.

2. Show that (G, * ) is abelian iff (a * b)1= al*bl,

Solution: Assume that G is Abelian.
~(a*b)=(bx*a)vabeG
(@ * b)'= (b *a)?
=alx b1
Conversely
assume (a * byt =alx* bl
Butal * bl=(b * a)! (By Reversal law)
~(@a * b)yl=(b * a)! From given
Taking inverses both sides,
((@*b)y!)y't=((b*a)")?

>a*b=bx*xa,va, begG
= (G, *) is abelian
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3. Show that if every element in a group is its own inverse, then
the group is abelian.

Solution: Let G be a group such that every element in G is its own
inverse.

~ForaegG, al=a
Leta, b €G, then (a * b) € G and so
(@*b)l =axb (1)
But (a * b)1=bl*al
Since bl= b, al=a.

=> (@axb)l=b*a (2)
From (1) and (2) we havea*b=b*xava, beG
~ G is abelian.

4. Prove that if for every element a in a group (G, *), a2 = e then G is an
abelian group.

Solution: Leta, b eG

Then (a*b)e Gandso (a * b)’=e (1)
Sincea €G,a’=e>a*a=¢e

beG, b’=e=>bx*xb=c¢e

From (1) (@a*b)3=e
>(@*b)*x(a*b)=exe
=(ax* a)*(b* b)
a*(bx*(a*xb))=a*(ax(bxb))
b *x(a* b)=a *(b*xb) [by Leftcancellation law]
i.e. (b*xa)*b=(a*xb)*b
~bxa=ax*xb [by Right cancellation law]

~ G is abelian.
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1) Define Permutation with Example:

A permutation of a set A is a one-to-one and onto function from set A to
itself.

Example.:

If A={1,2,3,4,5}, then a permutation is function o where: ¢ (1)=4, 0 (2)=2, ¢

(3)=5, 0(4)=3, o (5)=1. This can be represented with permutation notation
12345
as.o= |
42531
2) Define Symmetric Set:
If S is a finite set having n distinct elements then we shall have n! distinct
permutations of the sets. The set of all distinct permutations of degree n
defined on the set S is denoted by S, called symmetric set of permutations of

degree n.
Note: O(S,)=n!.

Problems:
1. List all elements of the symmetric set S3, where S={1,2,3} and prove
that (Ss, °) is a non abelian group.
Solution: Given S={1,2,3}.
Total number of permutation on S=3!=6.
Elements of symmetrical set Sz= {P1,P2,P3,P4,Ps,Ps}

where
123 123

P1:(123 ,p2:(132
Ps=(353).pa= (5]
ps=(315) pe=(3357

The operation " product of permutations defined on the set
S3={P1,P2,P3,P4,Ps,Ps} is given in the table.
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To prove: (Ss, °) is a non abelian group.

(i) Closure: Since the body of the table contains only the elements of Ss.

- (Ss, °) is closed.

(i) Associativity: We know composition of function S; is associative and
so it is true in S5 also. (Ss, °) is associative.

Pe(BP)=R:P=F.

(,qo,%)oa:@ oP,=P,.

ID1 o(/% OP4):(P1 0103)0104.

is the identity element of Ss.

(iii) Identity: A, =[i 223?\)

(iv) Inverse: From the above table
Pr=P,P =P,P' =P;P' =R;P" =P,;P" = B.Thus inverse exists
for every element. Hence inverse axiom is verified.

- (Ss, °) is a group.

(v)Commutative: From the table; P3 ° P4=Ps and P4 ° P3=P,.

. P3 ° P4 P4 ° P3. Hence (S, °) is not commutative.
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Topic 5: SUBGROUP

1) Define SUBGROUP with Example:

Definition: Let G, x be a group. Let e be the identity element in ¢ and let H € G.
If H itself is a group with the same operation * and the same identity element e.

(or)
Let , x beagroupand H<S G. H, = is called a subgroup of G, =, if H itselfis a
group with respect to .

Example: (Q, +) is a subgroup of (R, +).

2)Define TRIVIAL SUBGROUP OR IMPROPER SUBGROUP
Solution:  For any group G, =, { e, *x} and G, = are subgroups,
called trivial subgroups.

3)Define NON TRIVIAL SUBGROUP OR PROPER SUBGROUP
Solution: All other subgroups other than { , *} and (G, )

are called non trivial subgroup.

4)What is the CONDITION FOR A NON-EMPTY SUBSETH
to be subgroup of G

H,* is said to be a subgroup of G, * if
(i). His closed for the operation x, Va,b€ H,a*b € H.

(ii). H contains the identity element e
(i.e) e € Hwhere e is the identity of G.

(ii). Forany a€ H, a~1 € H.
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Topic6: T eoms on Subgroups

1)Theorem 1: State and Prove NECESSARY AND SUFFICIENT CONDITION
For a subgroup :

Statement: A non-empty subset H of a group G, * is a subgroup of G if and
only if axb-1€ Hforall a, b EH.

PROOF: Necessary Condition:

Let H be a subgroup of a group G and a, b € H.

To prove: axb-1€H.

Since H is a subgroup and b € H, b-1 must exist and b-1 € H.
Now, a€e H,b-1 € H= a* b~1 € H. [By closure property]

Sufficient Condition:
Assume ae H,beH=ax*b 1€H.
To prove: H be a subgroup of a group G.

(i). IDENTITY:
Now,a€H,aleH=>axal€eH=>e€H.
Hence the identity element, e € H.

(ii). INVERSE:
eEH, aeEH>exaleH=>a1€H.
= Every element 'a’ of H has its inverse a-1lis in H.

(iii). CLOSURE:
IfbeHthenb-'€eH.a€H, b-'eH=ax*(b-l')1eH=>axb€EH.

(iv). ASSOCIATIVE:
Now H < G and the associative law hold good for G, as G is a group.

Hence it is true for the element of H.

Thus all axioms for a group are satisfied for H.

Hence H is subgroup of G.
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2)Prove: The intersection of two subgroups of a group G, * is also a
subgroup of (G, *) & The Union need not be a Subgroup .

PROOF:
Let H and K are subgroups of(G, *)
To prove that: H n K is subgroup of (G, ).

We have H n K # @. [ atleast identity element is common to both H and K].
leta, beHNK=>aeHNnKand beHNK

a€EHNK=>a€H anda€

beHNK=>beH andbe

Now, ae H,be H=axb-1€ H[His a subgroup , Theorem 1],

a€K,beK=>axbteK|[Kisasubgroup, Theorem 1].
Therefore, a * b-1 € H N K.

ThusaeHNnKandbe HNK=ax*b-1€ HNK.
H N K is a subgroup of G. [By Theorem 1]

ALSO, The union of two subgroups need not be a subgroup.
Example:

Let (Z, +) is a group.
Let H and K are subgroup of (Z, +)

where H ={ ....—4,-2,0,2,4,6 ... } = {0, 2, +4, +6..}
K={..—6,-30369..}=1{0,+3, +6,+9..}

HUK ={0,£2, +3, £4, 6,18, 19..}
3,8EHUKbut3+8=11¢ HUK.

Therefore, H U K is not closed with respect to addition.

Therefore, H U K is not a subgroup of G.
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3)Prove: The union of two subgroups of a group ¢ iff one
is contained in the other.

PROOF:

Assume H and K are subgroups of Gand H < Kor K € H.
To prove that. H U K is a subgroup.

~ H and K are subgroups and HS K = HU K =K.
(or) H and K are subgroups and K € H= H U K =H.

Therefore, H U K is a subgroup.

Conversely,

Suppose H U K is a subgroup.
To prove that, one is contained in the other (i.e) H < Kor K € H.

Suppose, HZ Kor K € H.

Then, 3 elements a, suchthat ae H and a & K -------------------- (1)
beK and b & H------------------- (2)

Clearly, a,b € HUK.

Since, HU K is a subgroup of G, abe HU K.

Hence, ab € H or ab € K.

Case 1:letabeH.w a€eH,a! €EH.
Hence, a—! ab = b € H, which is a contradiction (2).

Case 2: LetabeK.w beK,b 1 €K.
Hence, b-1 ab = a € K, which is a contradiction (1).

Therefore, Our assumption is wrong.
Thus, HS Kor K € H.
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1. Find all the non-trivial subgroup of (Zs, +s).

Solution: Z, ={0,1,2,3,4,5}of His a subgroup of Zs
Hence, 0 (H) =1,2,3, or 6.

+6]0[1]2[3]4]5
Subgroups are 0 (0112|345
1[1]2[3]4]5]0
=>H = [0] 2 12(3]4|5(0|1
3 (3/4|5/0]1]2
= H=1[0], 3] 4 [4]5]0]1]2]3
5 (5/0[1|2]3]4
= H=[0],[2],[4]
2. Find all the subgroups of (Zs, +9).
Solution:
Z9=1{0,1,2,3,4,5,6,7,8} xo|0|1/2|3|4|5|6|7|8
Here, 0 (H) =1, 3. 0|o|1]|2]|3]|4|5|6|7]8
1[1]2]|3|4|5]/6]|7|8|0
Subgroups are 2 12|3|4|5|6|7|8|0]|1
= H = {0} 313/4|(5/6|7|8|0|1]|2
= H={0, 3, 6} 4 14(5|6|7(8|0[1|2]3
5(5(6(7[8[0]1]2]3]4
t910]3]6 66|/7|8/0|1]2|3|4]5
0/0)3)6 7 1718lo]1]2]3]45]6
313]6]0 g8 |8lol1]|2]3]4|5]|6]|7
6 |6/0]3

3.. Check whether H1= {0, 5,10} and H,={0, 4,8,12} are subgroups of Zs
with respect to +is.

Solution: H; = {0, 5,10}
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Hi = {0, 5,10}

+1s5 5110
0 5110
5 100
10 (10| 0 | 5

(H1, +15)

oo

H,={0,4812 }

+is]1 0] 4| 8|12
0 |0]|4]|8]12
4 |48 |12|1
8 |8]12] 1|5
12 (12| 1 9
(Hz, +15)
Table 1:
(H1, +15): All the entries in the addition table for H, are the elements of
H1.

Therefore, H, is a subgroup of Zis.

Table 2:

(H2, +15): All the entries in the addition table for H, are not the elements of
Ho.
Therefore, H: is a subgroup of Zis.
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Topic 7: NORMAL SUBGROUPS

1) Define NORMAL SUBGROUPS with Example.

Definition: A subgroup (H, *) of (G, ) is called normal subgroup of G

if aH=Ha,Va€QG.

2) Theorem: Every subgroup of an abelian group is normal
Proof: Let (G,*) be a abelian group and (H,*) be a subgroup of G.
Let a € G be any element.

Then aH ={a*h /he }

={h*a/h € H} (since Gis abelian) = Ha

Since ais arbitrary, aH = HaVa€ G
Therefore H is a normal subgroup of G.
3) Theorem: (N,x) is a normal subgroup of (G,*) iff a*xnxa-1€N
vV neNand Va € G.
Proof: Let (N,*) is a normal subgroup of (G,*). Therefore aN = Na Va€ G
S>ax*xN*xal=Nxaxal=Nxe=N
Therefore forany ne N,a* N*a1€N
Conversely, if ax Nxa-1€ N,n € N,Va € G,
ToproveaxN=N*a
letxea*xN=x=axnforsomen€eN

Xx=ax*nxe=>x=ax*nx(alxa)
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>x=axn*alxa€EN=xa

S e L A= [ AP (1)
letyeN+*a=y=n=+aforsomen€N

Then y=a*alxn*xa=ax(alxn*xal-1)€eax*N
Therefore ye Nxa=>y€ax*N therefore Nxa < a * N, (2)

Therefore from (1) and (2) wegetax N=N=x*a, Va €G.

Hence N is a normal subgroup of G.

4)Theorem: prove that intersection of two normal subgroup of (G, *) is @ normal

subgroup of (G, *) .
Proof: Let (N1, *) and (N, *) be two normal subgroups of (G, *) .

To Prove (N1 NNz, =) is a normal subgroup of (G, *).

a*n=xa-!e€Nyn N;(by previous theorem)

Since N1 and N; are normal subgroup of G, they are basically subgroups.
We know 1N N:is a subgroup of G.
Now we shall prove it is a normal subgroup of G.

Let n € Nin N2be any element and a € G be any element

Then n € Niand n € N;, Since Niand N;are normal, a *n *a-! € N; and
axnx*a!€ N Therefore axn+xa 1€ N1NN;.

Hence N1 n Nz is normal.
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Topic 8: Group Homomorphism:

1) Define Group Homomorphism.

Let G,» and G1,0 be two groups. A mapping g: G — G is called group
homomorphism if gaxb=gaogbforall a b €.

2) Properties of group homomorphism;:
A group homomorphism preserves identities, inverses and sub groups.

Theorem 1: Homomorphism preserves identities.
(or)

If () =ei1where e and e; are the identity elements of G and G1 respectively.

Proof: Let a € G, If e is the identity element G,
thenaxe=exa=a
=>f(axe)=fa
= f(a) of(e) =1 (a) ~ f is homomorphism
=>f(e)=e

= f preserves identities.
Theorem 2: Homomorphism preserves inverse (or) f (a=1)=[f(a)]!

Proof: G

(77 NN L7\

([ o\ ‘-.! \
\ { i\ alb)
Sinceaxal=e N/, \ /]

. \\__//
S fara)=f(e ) 7 \Z
= f(a) of(a 1) =f(e) - fishomomorphism

~fla)=[f (@]

letaeG,aleG=2axal=alxa=e

~ f preserves inverse
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Theorem 3: Homomorphism preserves subgroup

(or)
If His a subgroup of ,then f (H) is a subgroup of G;.

Proof:
Let H be a subgroup of G = for a,b € H,a b1 € H [ His a subgroup]
Let f (a) € f(H) and f (b) € f(H) .

Toprove f(a)of(b Hef( H)
Consider f(a) o f( b )= f(axb1)ef (H) [vaxb-1€H]
= f) of(b “1)e f (H) vV f(a) €f (H)andf (b) € f(H) .
=~ f (H) € G1is a subgroup of Gi.

Theorem 4: Let f: G —» G be a group homomorphism and H is a subgroup of G'.
Then f-1()is a subgroup of G.

Proof:
Clearly f-1 (H) is a non empty subset of ¢ [+ His a subgroup of G.]

Now let us consider a=f-1(c) e f-t (H)and b=f-1(d) e f-1 (H).
For c,d € Hwith f (a)=cand f(b) =d.
Leta,pbef-t(H) =f (a) f(b) €H [+Hisasubgroup.]
=f (@) f(b-1)EH
=>f(axb-1)eEH [~ f is homomorphism.]
=>axb1 €ef-1(H)

~a,bef1 (H) >ax*xb ! €f-1 (H)

Hence f-! (H) is a subgroup of G1.
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1)Define KERNEL OF A HOMOMORPHISM with Example:

Let f: G - G' be a group homomorphism. The set of elements of G which are
mapped into e’ (identity element in G') is called the kernel of f and it is denoted by
kerf .

ker f={xeG/f(x)=e }, e'is identity of G'.

u.—'l
b
[
h:r;'u' F

then ker f = {a, b, c}

Example: 1. f: (Z, +) - (Z, +) defined by f (x) = 2xthen ker f = {0}
2. :(R%") » (Rt,) defined by f (x) = |x|, then ker f = {1, —1}.

2) If f: G —» G'is a homomorphism then ker f = {e} iff fis 1-1.

Proof:
Assume f'is one to one Then
f(e)=¢€

~ ker f = {e}
Conversely,

Assume ker f = {e}

Now f(x) =f()
=f )*fy=)=f()* f(y~1)
=>f(xy-1)=¢
> xy-lekerf
s>xyl=e
>x=y

“f(x) =f ) =2x=y

Hence f is one toone.

3) Prove that Kernel of a homomorphism is a normal subgroup of G.

Proof:
Let (G,*) and (G’ ,") be the groups and f: G - G'is a group homomorphism.
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By the definition of homomorphism, f(a * b) =f (a).f (b) Va, b € G.
By the definition of kernel, K = {a € G/ f(a) = €'}
i.e., f ()=¢€ VaeKand ¢'is the identity element of H.

/% N\
lf lﬁ\'\lr £.)

- _'E:: a’ |

2/ U

L&

To prove that 'K’ is @ normal subgroup of G.
i.e., To prove
i) K isnonempty
i) a*xbl€K,Va beK
iii)x«xh*x1€eK,VheK xEG

i) Identity element ‘e’ of G is mapped to identity element of €’ of G'.
i.e., f(e)=¢

. e € K = K is nhon-empty.

i) Leta,beKc<G
=f@=f0B)=¢
fla*xb1)=f(a).f(b~1) {~ fis homomorphism}

=e'.(e)!
=e.e=¢
~a*b1eK.

Hence K = ker fis a subgroup

i) LetxeGand h €K be any element.
= f(h)=¢
fxhxxt)=f(x)fh):f(x1)
=f@) e fl)=f&  fx1)=¢
~sx+*hxx1eK
Hence K = ker fis a normal subgroup of G.
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Topic : 10 Fundamental Theorem Of Group Homomorphism
State and prove the Fundamental Theorem Of Group Homomorphism.

Statement: Let (G,*) and (G, -) be two groups.
Let f: G » G' be a homomorphism of groups with kernel K,
then G/K is isomorphic to (G).
ie., G/K=G

Proof: Given that f: G —» G' be a homomorphism of groups with kernel K.
Define the map @ (K xa) =f(a) ,Va€G

i) @is well defined:

Let a, b € G such that

Kxa=K=x*b

>axbleK = 2> (1)
= f(axb1) =e' {-Kis kernel}

=>f(a) =f(b-1) =e' {~ fis homomorphism}
= f (a) *f(b)~1 * f(b) = €' * f (D)

= f(a) =f(b)

>Q0(K*a)=0 (K *b)

~ @ is well defined.

i) @is one toone:

Toprovethat @ (K*a) =0 (K* )>K*a=K=xb
We know that @ (K *a) =@ (K *b) = f (a) = f(b)
= f (@) = f(b~1)=f (b) x (b=t )

=f(b=*b"1)
=f (e)
= f(a)«f(b-1)=¢
=>f(axb1)=¢€
=>axbleK
=>K+xa=K=xb

~ @is one to one.
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iii) @is onto:
Let ye G’
Since f is onto, there exists a € G such that f (a)=y

=0 (K*a) =y {+f@=0(K=xa)}
Thus every element of ¢’ has preimage in G/K
=~ @ is onto.

i) @ is a homomorphism:
@D(K+axK*b)=0 (K*axb)
=f(axDb)
= f(a) * f(b)
=@ (K+a) @ (K*Db)
~ @ is @ homomorphism.

Since @ is one to one, onto and homomorphism, @ is isomorphism between G/K
and G'.

~G/IK=G

] t{L.J

o)

2) State and prove the Cayley’s representation theorem.
(or)

Prove that every finite group of order 'n’ is isomorphic to a

permutation group of order ‘n’.

Proof:

To prove the theorem, we have to show the following.
a. To form a set G of permutation
b. To prove G'is agroup
C. Exhibit an Isomorphism @: G - G'.
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Let G be a finite group of order 'n” and a € G be any element.

Corresponding to ‘a’ we define a map f. (x) = a*x, Vx € G then f is one to one.
“fa(X) =fa ()

Sa*x=ax*y

= x = y (by left cancellation law)

Now y € G (Co-domain), then

a~1x*y € G such that

fa(@txy)=ax(alxy)=(a*xal)ry=exy=y

=~ fqis onto.

Thus f.is a one to one and onto function from G — G and so it is a permutation on
G.

b. To prove G'is a group:

Let , f» € G’ be any two elements, then

(fao fo) x = fa(fo(¥)) = falb*x) =ax(b*x) =(a*Db)*x= faou

=~ G'is closed.
Composition mapping is also associative.
Since ‘e’ is the identity element of G, f. € G is identity mapping.
letaeG=aleaG
forfa(@) =feraxx)=(atxa)xx=exx= fe(x)
o fa1€EG
Hence G’ is a group.

c.Isomorphism ¢: G —» G :

To prove G and G' are isomorphic.

Let @: G - G' be defined by 0 (a) =f.,Va e G

Now forany a, b€ G, @ (a*b) = fasb = fa* fr=0 (a)® (b)

~ @ is @ homomorphism.

Suppose @ (a) = @ (b) then

fa=fr=fa(x)=fpx) ,Vx€G= ax*x=>b=*x= a=b{Right Cancellation law}
~ @ is one to one

fa

Since " " is onto, @ is onto.

Thus G=qG
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Topic 11: COSETS and LAGRANGE’'S THEOREM:

1)Define cosets with Example:

Definition: Let (H,x) be a subgroup of (G,*). Let a € G be any element. Then
aH ={a = h /h € }is called the left coset of H in G determined by a.
Sometimes aH can be written as a * H.

The set Ha ={ h = a /h € H} is called the right coset of H in G determined by a.
Points to remember:

1. SinceeeH,axe€aH=>a€ aH and exa=a€ Ha
2.AlsoeH=e+h/he H=h/he H=H

and He=hxe/h€e H=h/h€ H=H

So H itself is a left coset as well as right coset.

3. In general, aH # Ha.

But if G is abelian, then aH = Ha That is every left coset is a right coset.

Problems:

1.Find the left cosets of H = (5Z, +) which is a subgroup of ( Z, +)
Solution: If H = 5Z then (H, +) is a subgroup of (Z, +).

Then the distinct left cosets of Hin Z are

0+ H=H=0+5xwhere €Z

1+ H= 1+ 5xwhere x€ Z

24+ H= 2+ 5xwherex€Z

34+ H= 3+ 5xwherex€Z

44+ H= 44 5xwherex€Z

54+H= 54 5xwhere xe€Z . . . .
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=5(1+x)wherexe€Z=H
6+H=6+5x/x€Z=1+5(1+x)wherexe€Z =1+ Hand so
on. Therefore number of different left cosets of Hin G is 5.
2)Theorem: Let (H,*) be a subgroup of (G,*). Then the set of all left cosets of H in G
form a partition of G.

Proof: Let aH and bH be any two left cosets.

We shall prove either aH = bH
(or) aH n bH = Q.
Suppose aH N bH + @, then there exists anelement
x€aH NbH=x€aHand x € bH

=>x= axhi x=bx*hy for some hi ,h2 € H eererererererrrennnns (1)

Therefore, axh1 =bx*hz, = a*h *h—11= b * h; *h—i

= ax(h *h‘ll) = bx* (h *h1_1)

=saxe=bx*(h2*xh1)
a=bx*(h2 *A71) e (2)

If xis any element in aH,then x=a xh
=>x=bx(hy*hyl)xh

= x=bx*(hz*h1)*h€bH
Therefore x € aH = x € bH therefore aH SbH .....ovecereeeenee. (2)
Similarly we can prove bH S aH .....eoreennneennseessnsesssnsesssssesns 3)

From (2) and (3) we get aH = aH.
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Thus any two left cosets are either equal or disjoint.Further ,./aH < G since union

of subsets is a subset.If x is any element in G, then x = x x e € xH

Therefore x is a left coset and hence  x€ ,.JaH.Hence>x€G=>x€ ,oaH =

G S ,cqaH . Therefore G = ,.gaH . Thus all the left cosets forms partition of G.

3) State and prove Lagrange’s theorem:
Statement:The order of a subgroup H of a finite group G divides the order of the

group. (i.e) order of H divides order of G.

Proof: Let (G,*) be a group of order 7 and (H,*) be a subgroup of order m.
Since G is a finite group, the number of left cosets of H in G is finite.
Let 7 be the number of left cosets of Hin G
Let the r cosets be a1H, azH ....ar H.
We know that the left cosets of ¢ forms a partition of G. (by previous theorem)
Therefore G=aiHU a2HU ....Ua- H
Therefore o (G) =0 (atHU a2H U ....U ar H)

=o0 (aiH) + 0 (a2 H) +---0 (ar H)
But o(a:H) = o (H) (by previous theorem)
Therefore o (G) =0 (H) + 0 (H) + -+ ... o(H)

r times

=>0(G)=ro(H)

_Thus O(H) divides o(G)
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Topic 12: RINGS AND FIELDS

1)Define Ring with Example:
Definition: A non-empty set R with two binary operations + and . called addition and

multiplication is called ring if the following axioms are satisfied.

(i) (R, +) is an abelian group with 0 as identity
(i) (R, .)is a semigroup
(iii)  The operation . is distributive over +
(i.e)a.b+c=ab+a.cand
b+c .a=b.a+c.a Vab,ceR

2)Define commutative ring.
Definition: A ring (R, +,.) is said to be commutativeif a.b=b.aVa, b€R

3)Define Ring with Identity.
Definition: A ring (R, +,.) is said to be a ring with identity if there exists an element

l1eRsuchthatl.a=a.1=a VEK

4)Define Ring with zero divisor.

Definition: If R, +, . is a commutative ring, then a # 0 € R is said to be a zero- divisor

if there exists a non-zero b € R such that ab =0.

5)Define Ring without zero divisors

Definition: If in a commutative ring (R, +,.), forany q,be Rsuch that a# 0,b # 0=

ab #+ 0 then the ring is without zero divisors.

In a ring without zero divisors, a.b=0=>a=0o0orb =0.

6)Define Integral domain:

Definition: Integral domain: A commutative ring (R, +, .) with identity and without
zero divisors is called an integral domain.

7)Define Field.

Definition: Field: A commutative ring (R, +, .) which has more than one element such
that every non zero element of R has a multiplicative inverse in R is called a field.
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Problems:

1. Showthat Zs={0,1,2, 3, 4}is an integral domain under +s and xs.

Solution:
+s5| O 1| 2 3| 4 X5 0 1 2 3 4
0 0 1] 2 3| 4 0 0 0 0 0 0
1 1 2] 3 410 1 0 1 2 3 4
2 2 3| 4 0] 1 2 0 2 4 1 3
3 3 410 1] 2 3 0 3 1 4 2
4| 4 0] 1 21 3 4 0 4 3 2 1

We can easily verify (Zs, +s5, Xs5) is @ commutative ring with identity 1. From the table
for x5, we see product of non zero elements is non zero and so (Zs, +s, Xs) ring

without zero divisors is an integral domain.

2. ProvethesetZz,s={0,1,2,3} is a commutative ring with respect to +4 and

X4.
Solution:
+4 0 1 2 3 X4 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

(i) All entries in both the tables +4, x4 , belongs to Z..
Therefore Z.is closed under +4, x4.

(i) The entries of the first row is same as those of first column.

(iii) Hence Z. is commutative with respect to +4, X4
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(iv) If a, b, c € Zs we can verify
a+4b +4c = a+4 b+ac

aXsabXac=aXsbXac
Also the law is true for +4 , X4 .

(iv) O+ia=a+40=aV € Z
IXg=axXs1l=a€ 4
0 is the additive identity and 1 is the multiplicative identity of Z4 with respect
to +4, Xa.
(v) From the table +4 additive inverse of 0,1,2,3 are 0,3,2,1 respectively. And
multiplicative inverse of non zero element 1,2,3 are 1,2,3 respectively.
(vi) Also we can verify distributive law
(vii) a X4 (b+ac) =a Xab +4(a X4 c)
b+s Xsa= bXsa +(cXsa)

Hence (Z4, +4,%4) is @ commutative ring with unity.

3. Prove that every field is an integral domain.

Proof: Let F be a field.
(i.e) (F,+,.) is a commutative ring with identity and non zero element has a
multiplicative inverse.

To prove F is an integral domain we have to show it has no zero divisors.

Suppose a, b € F with a. b = 0 let a # 0, since a is a non zero element,

its multiplicative invese exists (i.e) a—lexists .

Thereforeal.a.b=a1.0=>ala.b=0=>1.b=0

Thus a.b =0=a# 0= b =0. Therefore F has no zero divisors.

Hence (F,+, .) is an integral domain.
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4) Show that (z, +,.) is an integral domain where Z is s llintegers.

Proof: We know commutative ring with identity and without zero divisors is called

integral domain.

If Z is set of all integers, then
(i) (Z, +) is an abelian group.
(i)  (Z,x)is asemiring.
(i) axb=bxaVab,ceZ

(v, axb4+c=axb+axc Vab,c€Z
Hence ( z, +,.) is a commutative ring withidentity.
If a# 0, b+ 0 € Zthen we know ab # 0. So Z is without zero divisors.

Hence (z, +, .) is an integraldomain.
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