
1
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

UNIT III EXCEPTION HANDLING AND I/O

Answer:

Answer

The exception handling in java is one of the powerful mechanism to handle the runtime

errors so that normal flow of the application can be maintained. Exception Handling is a

mechanism to handle runtime errors such as ClassNotFound, IO, SQL, Remote etc.

Answer:

There are mainly two types of exceptions: checked and unchecked where error is considered as

unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked exceptions

1) Checked Exception

The classes that extend Throwable class except RuntimeException and Error are known as

checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at

compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked

exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Question : 1.a.What is Exception?

 Or

 1.b.Define Exception

Question : 2.a.What are the types of Exception?

 Or
 2.b.Write the classification of Exception?

Question : 3.a.Draw the Hierarchy of Java Exception classes
 Or
 3.b. Write about Exception Hierarchy in Java

Exceptions exception hierarchy throwing and catching exceptions built-in

exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics

Streams Byte streams and Character streams Reading and Writing Console

2
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Answer

Answer:

Question:
4.a.Explain the throwing and catching the exception in java
 Or
4.b.Discuss on exception handling in java.
 Or
4.c.Explain exception handling in java with examples.
 Or
4.d.Explain 5 keywords in exception handling in java with examples.

UnCheckedExceptions CheckedExceptions

Exceptions

ArrayIndexOutOf
BoundsException

StringIndexOutOf
BoundsException

Errors

Throwable

 Object

ArithmeticException

NullPointerException

IndexOutOfBounds
Exception

IOException

SQLException

ClassNotFound
Exception

StacOverFlowError

VirtualMachineEror

OutOfMemoryError

3
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

 Java Try Block

Java try block is used to enclose the code that might throw an exception. It must be used

within the method.Java try block must be followed by either catch or finally block.

Syntax

try

{

//code that may throw exception

}

catch(Exception_class_Name ref)

{}

Catching Exceptions

A method catches an exception using a combination of the try and catchkeywords. A

try/catch block is placed around the code that might generate an exception. Code within a try/catch

Syntax

try

{

 // Protected code

}

catch (ExceptionName e1)

{

 // Catch block

}

The code which is prone to exceptions is placed in the try block. When an exception occurs,

that exception occurred is handled by catch block associated with it. Every trya block should be

immediately followed either by a catch block or finally block.

4
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 Example

The following is an array declared with 2 elements. Then the code tries to access the

3rd element of the array which throws an exception.

// File Name : ExcepTest.java

import java.io.*;

public class ExcepTest

{

 public static void main(String args[])

 {

 try

 {

 int a[] = new int[2];

 System.out.println("Access element three :" + a[3]);

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Exception thrown :" + e);

 }

 System.out.println("Out of the block");

 }

}

This will produce

Output

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3

Out of the block

 Multiple Catch Blocks

A try block can be followed by multiple catch blocks. The syntax for multiple catch blocks

Syntax

try {

 // Protected code

 }

 catch (ExceptionType1 e1)

{

5
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 // Catch block

} catch (ExceptionType2 e2)

 {

 // Catch block

} catch (ExceptionType3 e3)

 {

 // Catch block

}

The previous statements demonstrate three catch blocks, but you can have any number of

them after a single try. If an exception occurs in the protected code, the exception is thrown to the

first catch block in the list. If the data type of the exception thrown matches ExceptionType1, it

gets caught there. If not, the exception passes down to the second catch statement. This continues

until the exception either is caught or falls through all catches, in which case the current method

stops execution and the exception is thrown down to the previous method on the call stack.

Example

Here is code segment showing how to use multiple try/catch statements.

try

{

 file = new FileInputStream(fileName);

 x = (byte) file.read();

}

 catch (IOException i)

{

 i.printStackTrace();

 return -1;

} catch (FileNotFoundException f) // Not valid! {

 f.printStackTrace();

 return -1;

}

The Throws/Throw Keywords

If a method does not handle a checked exception, the method must declare it using

the throws keyword. The throws keyword appears at the end of a method's signature.

6
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

You can throw an exception, either a newly instantiated one or an exception that you just caught,

by using the throw keyword.

Try to understand the difference between throws and throw keywords, throwsis used to

postpone the handling of a checked exception and throw is used to invoke an exception explicitly.

Example

import java.io.*;

public class className

{

 public void deposit(double amount) throws RemoteException {

 // Method implementation

 throw new RemoteException();

 }

 // Remainder of class definition

}

 The Finally Block

The finally block follows a try block or a catch block. A finally block of code always

executes, irrespective of occurrence of an Exception. Using a finally block allows you to run any

cleanup-type statements that you want to execute, no matter what happens in the protected code.

Syntax

try {

 // Protected code

} catch (ExceptionType1 e1) {

 // Catch block

} catch (ExceptionType2 e2) {

 // Catch block

} catch (ExceptionType3 e3) {

 // Catch block

}finally {

 // The finally block always executes.

}

7
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Example

public class ExcepTest {

 public static void main(String args[]) {

 int a[] = new int[2];

 try {

 System.out.println("Access element three :" + a[3]);

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Exception thrown :" + e);

 }finally {

 a[0] = 6;

 System.out.println("First element value: " + a[0]);

 System.out.println("The finally statement is executed");

 }

 }

}

Output

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3

First element value: 6

The finally statement is executed

Answer:

Question
5.a.Draw the Internal working of java try-catch block
 Or
5.b. How the try-catch block works in Java?

8
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

The JVM firstly checks whether the exception is handled or not. If exception is not handled, JVM

provides a default exception handler that performs the following tasks:

o Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is

maintained i.e. rest of the code is executed.

Answer

SI.NO. Java UnChecked Exceptions Defined in

java.lang.

Java Checked Exceptions Defined in

java.lang.

1. ArithmeticException

Arithmetic error, such as divide-by-zero.

ClassNotFoundException

Class not found.

2. ArrayIndexOutOfBoundsException

Array index is out-of-bounds.

CloneNotSupportedException

Attempt to clone an object that does not

Question :
6.a. Explain Built-In Exceptions in Java with example programs.

Or
6.b.What are the predefined exceptions in java with example programs?

9
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

implement the Cloneable interface.

3. ArrayStoreException

Assignment to an array element of an

incompatible type.

IllegalAccessException

Access to a class is denied.

4. ClassCastException

Invalid cast.

InstantiationException

Attempt to create an object of an abstract

class or interface.

5. IllegalArgumentException

Illegal argument used to invoke a method.

InterruptedException

One thread has been interrupted by

another thread.

6. IllegalMonitorStateException

Illegal monitor operation, such as waiting

on an unlocked thread.

NoSuchFieldException

A requested field does not exist.

7. IllegalStateException

Environment or application is in incorrect

state.

NoSuchMethodException

A requested method does not exist.

8. IllegalThreadStateException

Requested operation not compatible with

the current thread state.

9. IndexOutOfBoundsException

Some type of index is out-of-bounds.

10. NegativeArraySizeException

Array created with a negative size.

11. NullPointerException

Invalid use of a null reference.

12. NumberFormatException

Invalid conversion of a string to a numeric

format.

13. SecurityException

Attempt to violate security.

14. StringIndexOutOfBounds

Attempt to index outside the bounds of a

string.

10
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

15. UnsupportedOperationException

An unsupported operation was

encountered.

Built-in exceptions are the exceptions which are available in Java libraries. These exceptions

are suitable to explain certain error situations. Below is the list of important built-in exceptions in

Java.

Examples of Built-in Exception:

1. Arithmetic exception : It is thrown when an exceptional condition has occurred in an arithmetic

operation.

// Java program to demonstrate

// ArithmeticException

class ArithmeticException_Demo

{

public static void main(String args[])

 {

 try {

 int a = 30, b = 0;

 int c = a / b; // cannot divide by zero

 System.out.println("Result = " + c);

 }

 catch (ArithmeticException e) {

 System.out.println("Can't divide a number by 0");

 }

 }

}

Output:

Can't divide a number by 0

2. ArrayIndexOutOfBounds Exception : It is thrown to indicate that an array has been

accessed with an illegal index. The index is either negative or greater than or equal to the

size of the array.

// Java program to demonstrate

// ArrayIndexOutOfBoundException

11
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

class ArrayIndexOutOfBound_Demo

{

public static void main(String args[])

 {

 try {

 int a[] = new int[5];

 a[6] = 9; // accessing 7th element in an array of

 // size 5

 }

 catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Array Index is Out Of Bounds");

 }

 }

}

Output:

Array Index is Out Of Bounds

3. ClassNotFoundException : This Exception is raised when we try to access a class whose

definition is not found.

// Java program to illustrate the

// concept of ClassNotFoundException

class Bishal

{

}

 class Geeks

{

}

 class MyClass

{

public static void main(String[] args)

 {

 Object o = class.forName(args[0]).newInstance();

 System.out.println("Class created for" + o.getClass().getName());

 }

12
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

}

Output:

 ClassNotFoundException

4. FileNotFoundException : This Exception is raised when a file is not accessible or does not

open.

// Java program to demonstrate
// FileNotFoundException
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
class File_notFound_Demo
{
public static void main(String args[])
 {
 try {

 // Following file does not exist
 File file = new File("E:// file.txt");

 FileReader fr = new FileReader(file);
 }
 catch (FileNotFoundException e) {
 System.out.println("File does not exist");
 }
 }
}
Output:

File does not exist
5. IOException : It is thrown when an input-output operation failed or interrupted

// Java program to illustrate IOException

import java.io.*;

class Geeks

 {

public static void main(String args[])

 {

 FileInputStream f = null;

 f = new FileInputStream("abc.txt");

 int i;

 while ((i = f.read()) != -1) {

 System.out.print((char)i);

 }

13
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 f.close();

 }

}

Output:

error: unreported exception IOException; must be caught or declared to be thrown

6. InterruptedException : It is thrown when a thread is waiting, sleeping, or doing some

processing, and it is interrupted.

// Java Program to illustrate

// InterruptedException

class Geeks {

public static void main(String args[])

 {

 Thread t = new Thread();

 t.sleep(10000);

 }}

Output:

error: unreported exception InterruptedException; must be caught or declared to be thrown

7. NoSuchMethodException : t is thrown when accessing a method which is not found.

// Java Program to illustrate

// NoSuchMethodException

class Geeks {

public Geeks()

 {

 Class i;

 try {

 i = Class.forName("java.lang.String");

 try {

 Class[] p = new Class[5];

 }

 catch (SecurityException e) {

 e.printStackTrace();

 }

14
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 catch (NoSuchMethodException e) {

 e.printStackTrace();

 }

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new Geeks();

 }

}

Output:

error: exception NoSuchMethodException is never thrown

in body of corresponding try statement

8. NullPointerException : This exception is raised when referring to the members of a null

object. Null represents nothing

// Java program to demonstrate NullPointerException

class NullPointer_Demo {

public static void main(String args[])

{

 try {

 String a = null; // null value

 System.out.println(a.charAt(0));

 }

 catch (NullPointerException e) {

 System.out.println("NullPointerException..");

 }

 }

}

Output:

NullPointerException..

15
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

9. NumberFormatException : This exception is raised when a method could not convert a

string into a numeric format.

// Java program to demonstrate

// NumberFormatException

class NumberFormat_Demo

{

 public static void main(String args[])

 {

 try {

 // "akki" is not a number

 int num = Integer.parseInt("akki");

 System.out.println(num);

 }

 catch (NumberFormatException e) {

 System.out.println("Number format exception");

 }

 }

}

Output:

Number format exception

10. StringIndexOutOfBoundsException : It is thrown by String class methods to indicate that an

index is either negative than the size of the string.

// Java program to demonstrate

// StringIndexOutOfBoundsException

class StringIndexOutOfBound_Demo {

public static void main(String args[])

 {

 try {

 String a = "This is like chipping "; // length is 22

 char c = a.charAt(24); // accessing 25th element

 System.out.println(c);

 }

16
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 catch (StringIndexOutOfBoundsException e) {

 System.out.println("StringIndexOutOfBoundsException");

 }

 }

}

Output:

StringIndexOutOfBoundsException

Answer

Creating your own Exception that is known as custom exception or user-defined exception.

Java custom exceptions are used to customize the exception according to user need.

By the help of custom exception, you can have your own exception and message.

Example of java custom exception.

class InvalidAgeException extends Exception{

 InvalidAgeException(String s)

{

 super(s);

 }

}

class TestCustomException1

{

static void validate(int age)throws InvalidAgeException

{

 if(age<18)

 throw new InvalidAgeException("not valid");

 else

 System.out.println("welcome to vote");

 }

 public static void main(String args[])

{

 try{

Question :
7.a.Explain Creating Own Exception in java with examples
 Or
7.b.Expain about Custom Exception with example
 Or
7.c.Write about User-Defined exception with examples

17
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

validate(13);

 }catch(Exception m){System.out.println("Exception occured: "+m);

}

 System.out.println("rest of the code...");

 }

}

Output:Exception occured: InvalidAgeException:not valid

 rest of the code...

Answer

The java.lang.StackTraceElement class element represents a single stack frame. All stack

frames except for the one at the top of the stack represent a method invocation. The frame at the

top of the stack represents the execution point at which the stack trace was generated.

Class Declaration

Following is the declaration for java.lang.StackTraceElement

public final class StackTraceElement extends Object implements Serializable

Class Constructors

S.No. Constructor & Description

1

StackTraceElement(String declaringClass, String methodName, String fileName, int

lineNumber)

This creates a stack trace element representing the specified execution point.

Class methods

S.No. Method & Description

1

boolean equals(Object obj)

This method returns true if the specified object is another StackTraceElement

instance representing the same execution point as this instance.

2 String getClassName()

Question :
8.a.What are the methods in Stack Trace Elements?Give Examples

Or
8.b.Explain about Stack trace elements in java with example programs.

18
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

This method returns the fully qualified name of the class containing the execution

point represented by this stack trace element.

3

String getFileName()

This method returns the name of the source file containing the execution point

represented by this stack trace element.

4

int getLineNumber()

This method returns the line number of the source line containing the execution

point represented by this stack trace element.

5

String getMethodName()

This method returns the name of the method containing the execution point

represented by this stack trace element.

6
int hashCode()

This method returns a hash code value for this stack trace element.

7

boolean isNativeMethod()

This method returns true if the method containing the execution point represented

by this stack trace element is a native method.

8
String toString()

This method returns a string representation of this stack trace element

boolean equals(ob): Returns try if the invoking StackTraceElement is as the one passed in ob.

Otherwise it returns false.

 Syntax: public boolean equals(ob)

Returns: true if the specified object is

another StackTraceElement instance representing the same execution

point as this instance.

Exception: NA

// Java code illustrating equals() method

import java.lang.*;

import java.io.*;

19
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 StackTraceElement st1 = new StackTraceElement("foo", "fuction1",

 "StackTrace.java", 1);

 StackTraceElement st2 = new StackTraceElement("bar", "function2",

 "StackTrace.java", 1);

 Object ob = st1.getFileName();

 // checking whether file names are same or not

 System.out.println(st2.getFileName().equals(ob));

 }

}

Output:

true

1. String getClassName(): Returns the class name of the execution point described by the

invokingStackTraceElement.

Syntax: public String getClassName().
Returns: the fully qualified name of the Class
containing the execution point represented by this stack trace element.
Exception: NA.

// Java code illustrating getClassName() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("Class name of each thread involved:");

 for(int i = 0; i<2; i++)

 {

 System.out.println(Thread.currentThread().getStackTrace()[I].

20
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 getClassName());

 }

 }

}

Output:

Class name of each thread involved:

java.lang.Thread

StackTraceElementDemo

2. String getFileName(): Returns the file name of the execution point described by the

invokingStackTraceElement.

Syntax: public String getFileName().

Returns: the name of the file containing

the execution point represented by this stack trace element,

or null if this information is unavailable.

Exception: NA.

// Java code illustrating getFileName() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("file name: ");

 for(int i = 0; i<2; i++)

 System.out.println(Thread.currentThread().getStackTrace()[i].

 getFileName());

 }

}

Output:

file name: Thread.java

 StackTraceElementDemo.java

21
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

3. int getLineNumber(): Returns the source-code line number of the execution point described by

the invoking StackTraceElement. In some situation the line number will not be available, in

which case a negative value is returned.

Syntax: public int getLineNumber().

Returns: the line number of the source line containing the execution point represented by this

stacktrace element, or a negative number if this information is unavailable.

Exception: NA.

// Java code illustrating getLineNumber() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("line number: ");

 for(int i = 0; i<2; i++)

 System.out.println(Thread.currentThread().getStackTrace()[i].

 getLineNumber());

 }

}

 Output:

line number:

1556

10

4. String getMethodName(): Returns the method name of the execution point described by the

invoking StackTraceElement.

Syntax: public String getMethodName().

// Java code illu

// Java code illustrating getFileName() method.

import java.lang.*;

import java.io.*;

import java.util.*;

22
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("file name: ");

 for(int i = 0; i<2; i++)

 System.out.println(Thread.currentThread().getStackTrace()[i].

 getFileName());

 }

}

Output:

file name: Thread.java

 StackTraceElementDemo.java

5. int getLineNumber(): Returns the source-code line number of the execution point described by

the invoking StackTraceElement. In some situation the line number will not be available, in

which case a negative value is returned.

Syntax: public int getLineNumber().

Returns: the line number of the source line containing the execution point represented by this

stack trace element, or a negative number if this information is unavailable.

Exception: NA.

// Java code illustrating getLineNumber() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("line number: ");

 for(int i = 0; i<2; i++)

 System.out.println(Thread.currentThread().getStackTrace()[i].

 getLineNumber());

23
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 }

}

 Output:

line number:

1556

10

6. String getMethodName(): Returns the method name of the execution point described by the

invoking StackTraceElement.

Syntax: public String getMethodName().

// Java code illustrating getMethodName() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("method name: ");

 for(int i = 0; i<2; i++)

 System.out.println(Thread.currentThread().getStackTrace()[i].

 getMethodName());

 }}

Output:

method name:

getStackTrace

main

int hashCode(): Returns the hash code of the invoking StackTraceElement.

Syntax: public int hashCode().

Returns: a hash code value for this object.

Exception: NA.

24
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Output:

hash code:

-1225537245

-1314176653

7. boolean isNativeMethod(): Returns true if the invoking StackTraceElement describes a

native method. Otherwise returns false.

Syntax: public boolean isNativeMethod().

Returns: true if the method containing the execution point represented by this stack trace element

is a native method.

// Java code illustrating isNativeMethod() method.
import java.lang.*;
import java.io.*;
import java.util.*;
public class StackTraceElementDemo
{
 public static void ma`in(String[] arg)
 {

 for(int i = 0; i<2; i++)
 System.out.println(Thread.currentThread().getStackTrace()[i].

// Java code illustrating hashCode() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

{

System.out.println("hash code: ");

for(int i = 0; i<2; i++)

System.out.println(Thread.currentThread().getStackTrace()[i].

hashCode());

}

}

25
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 isNativeMethod());
 }
}

Exception: NA.

Output:

false

false

8. String toString(): Returns the String equivalent of the invoking sequence.

Syntax: public String toString().

Returns: a string representation of the object.

Exception: NA.

// Java code illustrating toString() method.

import java.lang.*;

import java.io.*;

import java.util.*;

public class StackTraceElementDemo

{

 public static void main(String[] arg)

 {

 System.out.println("String equivlaent: ");

 for(int i = 0; i<2; i++)

 System.out.println(Thread.currentThread().getStackTrace()[i].

 toString());

 }

}

Output:

String equivlaent:

java.lang.Thread.getStackTrace

StackTraceElementDemo.main

Question :
9.a. What is I/O?Explain in detail.

Or
9.b.Define I/P .

26
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Answer

Java I/O (Input and Output) is used to process the input and produce the output. Java uses

the concept of stream to make I/O operation fast. The java.io package contains all the classes

required for input and output operations. We can perform file handling in java by Java I/O API.

A stream can be defined as a sequence of d

Answer

 InputStream

 OutputStream

In java, 3 streams are created for us automatically. All these streams are attached with console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and error message to the console.

System.out.println("simple message");

System.err.println("error message");

Let's see the code to get input from console.

int i=System.in.read();//returns ASCII code of 1st character

System.out.println((char)i);//will print the character

Answer

OutputStream

Java application uses an output stream to write data to a destination, it may be a file, an

array, peripheral device or socket.

Question :
10.a.What is Stream? Explain in detail.

Or
10.b.Define Stream and its types.

Question :
11.a. Explain the methods and hierarchy of Output stream class.

Or
11.b.Write about Outputstream class in detail.

27
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

InputStream

Java application uses an input stream to read data from a source, it may be a file, an array,

peripheral device or socket.

OutputStream class

OutputStream class is an abstract class. It is the super class of all classes representing an

output stream of bytes. An output stream accepts output bytes and sends them to some sink.

Useful Methods of OutputStream

Method Description

1) public void write(int)throws
IOException

is used to write a byte to the current output
stream.

2) public void write(byte[])throws
IOException

is used to write an array of byte to the current
output stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

OutputStream Hierarchy

Java FileOutputStream Class

Java FileOutputStream is an output stream used for writing data to a file. If you have to

write primitive values into a file, use FileOutputStream class. You can write byte-oriented as well as

character-oriented data through FileOutputStream class. But, for character-oriented data, it is

preferred to use FileWriter than FileOutputStream.

FileOutputStream Class Declaration

28
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Let's see the declaration for Java.io.FileOutputStream class:

public class FileOutputStream extends OutputStream

FileOutputStream Class Methods

Method Description

protected void finalize() It is sued to clean up the connection with the file

output stream.

void write(byte[] ary) It is used to write ary.length bytes from the byte array

to the file output stream.

void write(byte[] ary, int off, int len) It is used to write len bytes from the byte array

starting at offset off to the file output stream.

void write(int b) It is used to write the specified byte to the file output

stream.

FileChannel getChannel() It is used to return the file channel object associated

with the file output stream.

FileDescriptor getFD() It is used to return the file descriptor associated with

the stream.

void close() It is used to closes the file output stream.

Java FileOutputStream Example 1: write byte

import java.io.FileOutputStream;

public class FileOutputStreamExample

{

public static void main(String args[])

{

 try{

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 fout.write(65);

 fout.close();

 System.out.println("success...");

29
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 }catch(Exception e){System.out.println(e);}

}

}

Output:

Success...

The content of a text file testout.txt is set with the data A.

testout.txt

A

Java FileOutputStream example 2: write string

import java.io.FileOutputStream;

public class FileOutputStreamExample

{

public static void main(String args[])

{

 try{

 FileOutputStream fout=new FileOutputStream("D: \\testout.txt");

 String s="Welcome to javaTpoint.";

 byte b[]=s.getBytes();//converting string into byte array

 fout.write(b);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 }

}

Output:

Success...

The content of a text file testout.txt is set with the data Welcome to java

testout.txt

Welcome to Java

12.a. Explain the methods and hierarchy of Input stream class.
Or
12.b.Write about Inputstream class in detail.
Or
12.c.What is the uses of input stream class? Explain the methods defined by input stream
class.

30
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Answer

InputStream class

InputStream class is an abstract class. It is the super class of all classes representing an input

stream of bytes.

Useful Methods of InputStream

Method Description

1) public abstract int read()throws

IOException

reads the next byte of data from the input stream. It

returns -1 at the end of file.

2) public int available()throws

IOException

returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws

IOException

is used to close the current input stream.

InputStream Hierarchy

Java FileInputStream Class

Java FileInputStream class obtains input bytes from a file. It is used for reading byte-oriented data

(streams of raw bytes) such as image data, audio, video etc. You can also read character-stream

data. But, for reading streams of characters, it is recommended to use FileReader class.

Java FileInputStream Class Declaration

31
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Let's see the declaration for java.io.FileInputStream class:

public class FileInputStream extends InputStream

Java FileInputStream Class Methods

Method Description

int available() It is used to return the estimated number of bytes that can be read
from the input stream.

int read() It is used to read the byte of data from the input stream.

int read(byte[] b) It is used to read up to b.length bytes of data from the input
stream.

int read(byte[] b, int off,

int len)

It is used to read up to len bytes of data from the input stream.

long skip(long x) It is used to skip over and discards x bytes of data from the input

stream.

FileChannel

getChannel()

It is used to return the unique FileChannel object associated with

the file input stream.

FileDescriptor getFD() It is used to return the FileDescriptor object.

protected void finalize() It is used to ensure that the close method is call when there is no

more reference to the file input stream.

void close() It is used to closes the stream.

Java FileInputStream example 1: read single character

import java.io.FileInputStream;

public class DataStreamExample

{

public static void main(String args[])

{

 try{

 FileInputStream fin=new FileInputStream("D:\\testout.txt");

 int i=fin.read();

 System.out.print((char)i);

32
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

 }

 Before running the code, a text file named as "testout.txt" is required to be created. In this

file, we are having following content:

 Welcome to java

After executing the above program, you will get a single character from the file which is 87 (in byte

form). To see the text, you need to convert it into character.

Output: W

Java FileInputStream example 2: read all characters

package com.javatpoint;

import java.io.FileInputStream;

public class DataStreamExample

{

public static void main(String args[])

{

 try{

 FileInputStream fin=new FileInputStream("D:\\testout.txt");

 int i=0;

 while((i=fin.read())!=-1)

{

 System.out.print((char)i);

 }

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

 }

Output: Welcome to java

13.a.Write about Bytestream class in detail.
Or

13.b.What is the uses of Bytestream?Explain the methods Java ByteArrayOutputStream
Class.

33
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Answer

Java ByteArrayOutputStream class is used to write common data into multiple files. In this

stream, the data is written into a byte array which can be written to multiple streams later. The

ByteArrayOutputStream holds a copy of data and forwards it to multiple streams. The buffer of

ByteArrayOutputStream automatically grows according to data.

Java ByteArrayOutputStream Class Declaration

Let's see the declaration for Java.io.ByteArrayOutputStream class:

public class ByteArrayOutputStream extends OutputStream

Java ByteArrayOutputStream Class Constructors

Constructor Description

ByteArrayOutputStream() Creates a new byte array output stream with the initial

capacity of 32 bytes, though its size increases if

necessary.

ByteArrayOutputStream(int

size)

Creates a new byte array output stream, with a buffer

capacity of the specified size, in bytes.

Java ByteArrayOutputStream class methods

Method Description

int size() It is used to returns the current size of a buffer.

byte[] toByteArray() It is used to create a newly allocated byte array.

String toString() It is used for converting the content into a string decoding
bytes using a platform default character set.

String toString(String

charsetName)

It is used for converting the content into a string decoding

bytes using a specified charsetName.

void write(int b) It is used for writing the byte specified to the byte array

output stream.

void write(byte[] b, int off,

int len

It is used for writing len bytes from specified byte array

starting from the offset off to the byte array output

stream.

34
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

void

writeTo(OutputStream out)

It is used for writing the complete content of a byte array

output stream to the specified output stream.

void reset() It is used to reset the count field of a byte array output

stream to zero value.

void close() It is used to close the ByteArrayOutputStream.

Example of Java ByteArrayOutputStream

Let's see a simple example of java ByteArrayOutputStream class to write common data into 2

files: f1.txt and f2.txt.

package com.javatpoint;

import java.io.*;

public class DataStreamExample

{

public static void main(String args[])throws Exception

{

 FileOutputStream fout1=new FileOutputStream("D:\\f1.txt");

 FileOutputStream fout2=new FileOutputStream("D:\\f2.txt");

 ByteArrayOutputStream bout=new ByteArrayOutputStream();

 bout.write(65);

 bout.writeTo(fout1);

 bout.writeTo(fout2);

 bout.flush();

 bout.close();//has no effect

 System.out.println("Success...");

 }

 s}

Output:

Success...

f1.txt:

A

f2.txt:

A

35
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Java Byte streams are used to perform input and output of 8-bit bytes, whereas

Answer

Java Character streams are used to perform input and output for 16-bit unicode. Though

there are many classes related to character streams but the most frequently used classes

are, FileReader and FileWriter. Though internally FileReader uses FileInputStream and FileWriter

uses FileOutputStream but here the major difference is that FileReader reads two bytes at a time

and FileWriter writes two bytes at a time.

We can re-write the above example, which makes the use of these two classes to copy an

Example

import java.io.*;

public class CopyFile

 {

 public static void main(String args[]) throws IOException

 {

 FileReader in = null;

 FileWriter out = null;

 try {

 in = new FileReader("input.txt");

 out = new FileWriter("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

14.a.Write about Character stream class in detail.
Or

14.b.What is the uses of Character stream?Explain the methods.

36
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 }finally {

 if (in != null)

 {

 in.close();

 }

 if (out != null)

 {

 out.close();

 }

 }

 }

}

Now let's have a file input.txt

 This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating

output.txt file with the same content as we have in input.txt. So let's put the above code in

$javac CopyFile.java

$java CopyFile

Answer

The Java Console class is be used to get input from console. It provides methods to read

texts and passwords. If you read password using Console class, it will not be displayed to the user.

The java.io.Console class is attached with system console internally. The Console class is

introduced since 1.5.

Let's see a simple example to read text from console.

String text=System.console().readLine();

System.out.println("Text is: "+text);

Java Console Class Declaration

Let's see the declaration for Java.io.Console class:

public final class Console extends Object implements Flushable

15.a.What are the Reading and writing methods in Java Console class.
Or

15.b.Explain how to read and write datas using Java Console class methods.

37
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Java Console Class Methods

Method Description

Reader reader() It is used to retrieve the reader object associated with

the console

String readLine() It is used to read a single line of text from the

console.

String readLine(String fmt,

Object... args)

It provides a formatted prompt then reads the single

line of text from the console.

char[] readPassword() It is used to read password that is not being displayed

on the console.

char[] readPassword(String fmt,

Object... args)

It provides a formatted prompt then reads the

password that is not being displayed on the console.

Console format(String fmt,

Object... args)

It is used to write a formatted string to the console

output stream.

Console printf(String format,

Object... args)

It is used to write a string to the console output

stream.

PrintWriter writer() It is used to retrieve the PrintWriter object associated

with the console.

void flush() It is used to flushes the console.

How to get the object of Console

System class provides a static method console() that returns the singleton instance of Console class.

public static Console console(){}

Let's see the code to get the instance of Console class.

Console c=System.console();

Java Console Example

import java.io.Console;

class ReadStringTest

38
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

{

public static void main(String args[])

{

Console c=System.console();

System.out.println("Enter your name: ");

String n=c.readLine();

System.out.println("Welcome "+n);

}

}

Output

Enter your name: Nakul Jain

Welcome Nakul Jain

Java Console Example to read password

import java.io.Console;

class ReadPasswordTest

{

public static void main(String args[])

{

Console c=System.console();

System.out.println("Enter password: ");

char[] ch=c.readPassword();

String pass=String.valueOf(ch);//converting char array into string

System.out.println("Password is: "+pass);

}

}

Output

Enter password:

Password is: 123

Java Reader

Answer

16.a.What are the Reading and writing methods in Java Reader and Java Writer class.
 Or
16.b.Explain how to read and write datas using Java Reader and Writer class methods.

39
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Java Reader is an abstract class for reading character streams. The only methods that a

subclass must implement are read(char[], int, int) and close(). Most subclasses, however, will

override some of the methods to provide higher efficiency, additional functionality, or both.

Some of the implementation class are BufferedReader, CharArrayReader, FilterReader,

InputStreamReader, PipedReader, StringReader.

Fields

Modifier and Type Field Description

protected Object lock The object used to synchronize operations on

this stream.

Constructor

Modifier Constructor Description

Protected Reader() It creates a new character-stream reader

whose critical sections will synchronize on

the reader itself.

Protected Reader(Object

lock)

It creates a new character-stream reader

whose critical sections will synchronize on

the given object.

Methods

Modifier
and Type

Method Description

abstract
void

close() It closes the stream and releases
any system resources associated
with it.

Void mark(int
readAheadLimit)

It marks the present position in the
stream.

Boolean markSupported() It tells whether this stream

supports the mark() operation.

40
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Int read() It reads a single character.

Int read(char[] cbuf) It reads characters into an array.

abstract

int

read(char[] cbuf, int off,

int len)

It reads characters into a portion of

an array.

Int read(CharBuffer target) It attempts to read characters into

the specified character buffer.

Boolean ready() It tells whether this stream is ready

to be read.

Void reset() It resets the stream.

Long skip(long n) It skips characters.

Example

import java.io.*;

public class ReaderExample

{

public static void main(String[] args)

{

 try

{

 Reader reader = new FileReader("file.txt");

 int data = reader.read();

 while (data != -1)

 {

 System.out.print((char) data);

 data = reader.read();

 }

 reader.close();

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

41
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

 }

 }

}

file.txt:

I love my country

Output:

I love my country

JAVA FILEWRITER CLASS

Java FileWriter class is used to write character-oriented data to a file. It is character-oriented

class which is used for file handling in java.

Unlike FileOutputStream class, you don't need to convert string into byte array because it provides

method to write string directly.

Java FileWriter class declaration

Let's see the declaration for Java.io.FileWriter class:

public class FileWriter extends OutputStreamWriter

Constructors of FileWriter Class

Constructor Description

FileWriter(String file) Creates a new file. It gets file name in string.

FileWriter(File file) Creates a new file. It gets file name in File object.

Methods of FileWriter Class

Method Description

void write(String text) It is used to write the string into FileWriter.

void write(char c) It is used to write the char into FileWriter.

void write(char[] c) It is used to write char array into FileWriter.

void flush() It is used to flushes the data of FileWriter.

void close() It is used to close the FileWriter.

42
UNIT III EXCEPTION HANDLING AND I/O

CS8392-Object Oriented Programming

Java FileWriter Example

In this example, we are writing the data in the file testout.txt using Java FileWriter class.

package com.javatpoint;

import java.io.FileWriter;

public class FileWriterExample

{

 public static void main(String args[])

{

 try

{

 FileWriter fw=new FileWriter("D:\\testout.txt");

 fw.write("Welcome to javaTpoint.");

 fw.close();

 }catch(Exception e){System.out.println(e);}

 System.out.println("Success...");

 }

}

Output:

Success...

testout.txt:

Welcome to java.

Part A Question Bank

1.a.What is exception?
Or

1.b.Define Exception?
 An exception is an event, which occurs during the execution of a program, that disrupts
the normal flow
2.a.What is error?
 Or
2.b.Define error?
 An Error indicates that a non-recoverable condition has occurred that should not be
caught. Error, a subclass of Throwable, is intended for drastic problems, such as OutOf-
MemoryError, which would be reported by the JVM itself.
3.a.Which is super class of Exception?
 Or
3.b.What is super class of Exception?

