

Question Paper Code: 57508

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Computer Science and Engineering

MA 6453 - PROBABILITY AND QUEUEING THEORY

(Common to Mechanical Engineering (Sandwich) and Information Technology)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Use of statistical tables may be permitted.

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

1. Let X be a discrete R.V. with probability mass function

$$P(X = x) = \begin{cases} \frac{x}{10}, & x = 1, 2, 3, 4, \\ 0, & \text{otherwise} \end{cases}$$

Compute $P(X \le 3)$ and $E(\frac{1}{2}X)$.

- 2. If a R.V X has the moment generating function $M_x(t) = \frac{3}{3-t}$, compute $E(X^2)$.
- 3. The joint p.d.f. of R.V. (X,Y) is given as $f(x, y) = \begin{cases} \frac{1}{x}, & 0 < y < x \le 1 \\ 0, & \text{otherwise} \end{cases}$ Find the marginal p.d.f. of Y.

- 4. Let X and Y be two independent R.Vs with Var(X) = 9 and Var(Y) = 3. Find Var(4X - 2Y + 6).
- 5. The random process X(t) is given by $X(t) = Y \cos(2\pi t)$, t > 0, where Y is a R.V. with E(Y) = 1. Is the process X(t) stationary?
- 6. Derive the autocorrelation function for a Poisson process with rate λ .
- 7. For an M/M/C/N FCFS (C < N) queueing system, write the expressions for P_0 and P_N .
- 8. Define (i) balking and (ii) reneging of the customers in the queueing system.
- An M/D/1 queue has an arrival rate of 10 customers per second and a service rate of 20 customers per second. Compute the mean number of customers in the system.
- 10. Write a expression for the traffic equation of the open Jackson queueing network.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) (i) The probability mass function of a discrete R.V X is given in the following table:

X	-2	-1	0	1	2	3
P(X = x)	0.1	k	0.2	2k	0.3	k

Find (1) the value of k (2) P(X < 1) (3) $P(-1 < X \le 2)$ (4) E(X).

(ii) Let X be a continuous R.V with probability density function

$$f(x) = \begin{cases} xe^{-x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$$

Find (1) the cumulative distribution function of X

- (2) Moment Generating Function $M_x(t)$ of X
- (3) P(X < 2)
- (4) E(X).

(8)

OR

2

(b) (i) Let $P(X = x) = \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^{x-1}$, $x = 1, 2, 3, \dots$, be the probability mass function

of a R.V X Compute

(8)

- (1) P(X > 4)
 - (2) P(X > 4/X > 2)
 - (3) E(X)
 - (4) Var(X)
- (ii) Let X be a uniformly distributed R.V. over [-5, 5]. Determine

- (1) $P(X \le 2)$
- (2) P(|X| > 2)
- (3) Cumulative distribution function of X
- (4) Var (X)
- 12. (a) (i) Find the constant k such that

$$f(x, y) = \begin{cases} k(x+1)e^{-y} , & 0 < x < 1, y > 0 \\ 0 , & \text{otherwise} \end{cases}$$

is a joint p.d.f. of the continuous R.V. (X, Y). Are X and Y independent R.Vs? Explain.

(8)

(ii) The joint p.d.f. of the continuous R.V. (X, Y) is given as

$$f(x, y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{otherwise} \end{cases}$$

Find the p.d.f. of the R.V $U = \frac{X}{Y}$.

(8)

OR

- (b) (i) Let the joint p.d.f. of R.V. (X, Y) be given as $f(x, y) = \begin{cases} Cxy^2, & 0 \le x \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$ Determine (1) the value of C (2) the marginal p.d.fs of X and Y (3) the conditional p.d.f. f(x/y) of X given Y = y
 - (ii) A joint probability mass function of the discrete R.Vs X and Y is given as $P(X = x, Y = y) = \begin{cases} \frac{x+y}{32}, & x = 1,2, y = 1, 2, 3, 4\\ 0, & \text{otherwise} \end{cases}$ Compute the covariance of X and Y.
- 13. (a) (i) Consider a random process $Y(t) = X(t) \cos(w_0 t + \theta)$, where X(t) is widesense stationary process, θ is a uniformly distributed R.V. over $(-\pi, \pi)$ and w_0 is a constant. It is assumed that X(t) and θ are independent. Show that Y(t) is a wide-sense stationary.
 - (ii) Consider a Markov chain $\{X_n : n = 0, 1, 2,\}$ having state space $S = \{1, 2\}$ and one-step

TPM P =
$$\begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}$$
 (8)

- (1) Draw a transition diagram.
- (2) Is the chain irreducible?
- (3) Is the state-1 ergodic? Explain.
- (4) Is the chain ergodic? Explain.

OR

- (b) (i) Let X(t) and Y(t) be two independent Poisson processes with parameters λ_1 and λ_2 respectively. Find
 - (1) P(X(t) + Y(t)) = n, n = 0, 1, 2, 3, ...,
 - (2) $P(X(t) Y(t)) = n, \ n = 0, \pm 1, \pm 2,...$ (8)

4

- (ii) Consider a Markov chain $\{X_n; n = 0, 1, 2, ...\}$ having state space $S = \{1, ...\}$
 - 2, 3} and one-step TPM P = $\begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$ and initial probability

distribution $P(X_0 = i) = \frac{1}{3}$, i = 1, 2, 3.

Compute

- (1) $P(X_3 = 2, X_2 = 1, X_1 = 2 / X_0 = 1)$
- (2) $P(X_3 = 2, X_2 = 1/X_1 = 2, X_0 = 1)$
- (3) $P(X_2 = 2/X_0 = 2)$
- (4) Invariant probabilities of the Markov chain.
- 14. (a) (i) Customers arrive at a watch repair shop according to a Poisson process at a rate of 1 per every 10 minutes, and the service time is an exponential random variable with mean 8 minutes. Compute
 - (1) the mean number of customers L_s in the system.
 - the mean waiting time W_s of a customer spends in the system,
 - (3) the mean waiting W_q of a customer spends in the queue,
 - (4) the probability that the server is idle.
 - (ii) A petrol pump station has 4 petrol pumps. The service time follows an exponential distribution with mean of 6 minutes and cars arrive for service in a Poisson process at the rate of 30 cars per hour.
 - Find the probability that no car is in the system.
 - (2) What is the probability that an arrival will have to wait in the queue?
 - (3) Find the mean waiting time in the system.

(8)

(8)

OR

5

- (b) (i) A one person barber shop has 6 chairs to accommodate people waiting for a haircut. Assume that customers who arrive when all the 6 chairs are full leave without entering the barber shop. Customers arrive at the rate of 3 per hour and spend an average of 15 minutes in the barber's chair. Compute
 - (1) P₀
 - (2) L_q
 - (3) P₇
 - (4) W_s . (8)
 - (ii) Consider a single-server queue where the arrivals are Poisson with rate $\lambda = 10$ / hour. The service distribution is exponential with rate $\mu = 5$ /hour. Suppose that customers balk at joining the queue when it is too long. Specifically, when there are 'n' in the system, an arriving customer joins the queue with probability $\frac{1}{(n+1)}$. Determine the steady-state probability that there are 'n' customers in the system.
- 15. (a) Discuss an M/G/1/∞ FCFS queueing system and hence obtain the Pollaczek-Khintchine (P-K) mean value formula. Deduce also the mean system size for the M/M/1/∞: FCFS queueing system from the P-K formula. (16)

OR

- (b) (i) The police department has 5 patrol cars. A patrol car breaks down and repairs service one every 30 days. The police department has two repair workers, each of whom takes an average of 3 says to repair a car. Breakdown times and repair time are exponential. Determine the average number of patrol cars in good condition. Also find the average down time for a patrol car that needs repairs.
 - (ii) A repair facility is shared by a large by a large number of machines for repair. The facility has two sequential stations with respective rates of service 1 per hour and 3 per hour. The cumulative failure rate of all the machines is 0.5 per hour. Assuming that the system behaviour may be approximated by a two-station tandem queue. Find
 - (1) the average number of customers in both station,
 - (2) the average repair time,
 - (3) the probability that both service stations are idle.

(8)

(8)