318

Register No.:

April 2018

Time - Three hours (Maximum Marks: 75)

- [N.B: (1) Q.No. 8 in PART A and Q.No. 16 in PART B are compulsory.

 Answer any FOUR questions from the remaining in each PART A and PART B
 - (2) Answer division (a) or division (b) of each question in PART C.
 - (3) Each question carries 2 marks in PART A, 3 marks in Part B and 10 marks in PART C.
 - (4) Use of Steam tables are permitted.]

PART - A

- 1. What is universal gas constant? State its value.
- 2. Define higher calorific value and lower calorific value of a fuel.
- 3. What is the use of Orsat apparatus? Name the chemicals used in it.
- 4. Differentiate wet steam and superheated steam.
- 5. State any two advantages of a condenser in steam power plant.
- 6. Define brake power and indicated power.
- 7. Distinguish between a refrigerator and a heat pump.
- State Clausius statement of second law of thermodynamics.

PART - B

- 9. Find the volume of 2kg of air at STP.
- 10. State the requirements of a good fuel.
- 11. What are the uses of compressed air?
- 12. State the parts of a steam engine.
- 13. Explain the working of roots blower with a sketch.
- 14. Explain sensible heating and sensible cooling processes.
- 15. Draw the P-V and T-S diagrams of the diesel cycle and indicate various processes.
- 16. Explain the various stages in the formation of steam.

[Turn over....

1		
- 4	OF	/692—
	2	n4/

PART - C

17. (a) A quantity of air occupies a volume of 30 litres at a temperature of 38°C and a pressure of 104kN/m². The temperature of the air is raised by adiabatic compression until the volume becomes 6 litres. Find the final temperature, the external work done, the change in internal energy and the change in entropy. Take R=0.29kJ/kgK, v=1.4.

(Or)

- (b) A perfect gas is compressed according to the law $PV^{1.25} = C$, from an initial pressure of 1 bar and volume of $0.9 \,\mathrm{m}^3$ to a final volume of $0.6 \,\mathrm{m}^3$. Determine the final pressure and change in entropy per kg of gas during the process. Take R=287J/kgK, v=1.4.
- 18. (a) What will be the loss in ideal efficiency of a diesel engine with the compression ratio of 14, if the fuel cut-off is delayed from 6% to 9% of the stroke?

(Or

- (b) Explain with a neat sketch the method to determine HCV and LCV of a gaseous fuel using gas calorimeter.
- 19. (a) Explain the working of BHEL high pressure boiler with a neat sketch.

(Or)

- (b) (i) Explain the working of surface condenser with a neat sketch.
 - (ii) Explain the working of a single cylinder double acting reciprocating steam engine with a neat sketch.
- 20. (a) Explain the working of four stroke diesel engine with neat sketches.

(Or)

(b) During the test on a single cylinder, two stroke oil engine, the following data were obtained:

Cylinder bore

: 200 mm.

Stroke

: 250 mm.

Engine speed

: 300 rpm.

. 300 rpm.

Net brake torque : 500 Nm.
Indicated mean effective pressure : 4.9 bar.
Fuel oil consumption : 5 kg/hr.
Temperature rise of cooling water : 55° C
Specific heat capacity of water : 4.19 kJ/kgK.
Cooling water circulated : 4 kg/min.
Calorific value of fuel oil : 44,000 kJ/kg.

Calculate (i)Mechanical efficiency (ii)Specific fuel consumption. Draw up the heat balance sheet in kW.

21. (a) Explain the working of vapour compression refrigeration system with a neat sketch.

(Or)

- (b) Explain the following with a neat sketch:
 - (i) Room air-conditioner.
 - (ii) Central air-conditioning plant.
