SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

MA8151 MATHEMATICS – I

13 Mark Important Questions

Part-B

Unit-I

- 1. Guess the value of the limit (if it exists) for the function $\lim_{x\to 0} \frac{e^{5x}-1}{x}$ by evaluating the function at the given numbers $x=\pm~0.5,\,\pm~0.1,\,\pm~0.001,\,\pm~0.0001$ (correct to six decimal places.
- 2. For the function $f(x) = 2 + 2x^2 x^4$, find the intervals of increase or decrease, local maximum and minimum values, the intervals of concavity and the inflection points.
- 3. (i) Find the values of a and b that make f continuous on $(-\infty, \infty)$.

$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & \text{if } x < 2\\ ax^2 - bx + 3, & \text{if } 2x \le x \le 3\\ 2x - a + b, & \text{if } x \ge 3 \end{cases}$$

(ii) find the derivative of $f(x) = cos^{-1} \left(\frac{b + acosx}{a + bcosx}\right)$

(iii) find y' for cos(xy) = 1 + sin y

- 4. If $f(x) = \frac{1-x}{2+x}$ then, find the equation for f'(x) using the concept of derivatives.
- 5. Find the derivative of $f(x) = \tanh^{-1} \left[\tan \frac{x}{2} \right]$.

Unit-II

1. If
$$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, find $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z}$

- 2. Find the maxima and minima of $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2$
- 3. Find the Taylor's series expansion of function of $f(x) = \sqrt{1 + x + y^2}$ powers of (x, y) and y up to second degree terms.
- 4. Find the minimum distance from the point (1,2,0) to the cone $z^2 = x^2 + y^2$.
- 5. For the given function $z=\tan^{-1}\left(\frac{x}{y}\right)-(xy)$, verify whether the statement $\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial^2 z}{\partial x \partial y}$.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

Unit-III

- 1. Using integration by parts, evaluate $\int \frac{(lnx)^2}{x^2} dx$
- 2. Evaluate $\int_{\frac{\sqrt{2}}{2}}^{\frac{2}{3}} \frac{dx}{x^5 \sqrt{9x^2 1}}$.
- 3. Establish a reduction formula for $I_n = \int \sin^n x \ dx$. Hence, find $\int_0^{\frac{\pi}{2}} \sin^n x \ dx$.
- 4. Evaluate $\int e^x \sin x \, dx$ by using integration by parts.
- 5. Evaluate $\int_0^x \sin^2 x \cos^4 x \, dx$.

Unit-IV

- 1. Evaluate $\iint xy(x+y)dxdy$ over the area between $y=x^2$ and y=x.
- 2. Express $\int_0^a \int_y^a \frac{x^2}{(x^2+y^2)^{\frac{3}{2}}} dxdy$ in polar coordinates and then evaluate it.
- 3. Find the area bounded by the parabolas $y^2 = 4 x$ and $y^2 = x$.
- 4. Evaluate $\iint (xy)dx dy$ over the positive quadrant of the circle $x^2+y^2=a^2$.
- 5. Change the order of integration for the given integral $\int_0^a \int_{\frac{x}{a}}^{\frac{x}{a}} (x^2 + y^2) dy dx$ and evaluate it.

Unit-V

- 1. Solve (D²+4D+5) $y=e^x + x^3 + cos2x + 1$.
- 2. Solve $x^2 \frac{d^2y}{dx} x \frac{dy}{dx} + y = \left(\frac{\ln x}{x}\right)^2$
- 3. Solve $\frac{dx}{dt} \frac{dy}{dt} + 2y = \cos 2t$, $\frac{dx}{dt} 2x + \frac{dy}{dt} = \sin 2t$.
- 4. Solve $y'' 4y' + 4y = (x + 1)e^{2x}$ by the method of variation of parameters.
- 5. Solve the simultaneous differential equation $Dx + y = \sin 2t$ and $-X + Dy = \cos 2t$.